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In the supplementary materials, we provide the details
and evaluations of our 3D performance tracking method,
network designs for our human rendering models, and more
results and comparison. Please also refer to the supplemen-
tary video.

A. Model-based Monocular 3D Pose Tracking

Given a video of a moving person, we represent p as
the posed 3D body at each frame. Specifically, we pre-
dict the parameters of the template SMPL model [8], i.e.,
p = SMPL(θ,β), where SMPL is a function that takes
the pose θ ∈ R72 and shape β ∈ R10 parameters and pro-
vides the vertex locations of the 3D posed body. To this end,
we learn a tracking function that regresses accurate and tem-
porally coherent pose and camera parameters from an image
sequence:

θt,Ct = ftrack(At), (1)

where ftrack is the tracking function, At is the image at
time t, and Ct ∈ R3 is the camera translation relative to
the body, camera rotation is encoded in θt. We assume the
shape, β, is constant. We use a weak-perspective camera
projection model [4] where we represent the camera trans-
lation in the z axis as the scale parameter. ftrack is learned
by minimizing the following loss for each input video:

Ltrack = Lf + λrLr + λdLd + λtLt, (2)

where Lf , Lr, Ld, and Lt are the fitting, rendering, data
prior, and temporal consistency losses, respectively, and λr,
λd, and λt are their weights. We set λr = 1, λd = 0.1,
and λt = 0.01 in our experiments. The overview of our
optimization framework is described in Figure 1.

Lf and Lr utilize image-based dense UV map predic-
tions [3] which enforce the 3D body fits to better align with
the image space silhouettes of the body. Specifically, Lf

measures the 2D distance between the projected 3D vertex
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Figure 1. The overview of our model-based monocular 3D per-
formance tracking. A regression network predicts the body (θ)
and camera (C) pose parameters from a single image. The pre-
trained SMPL layer [8] decodes the predicted parameters to re-
construct the posed 3D body mesh. We render out the dense IUV
coordinates of the mesh using a differentiable rendering layer and
train the regression network by enforcing self-consistency between
densepose detection and rendered IUV map [3] (Lr and Lf ); and
enforcing temporal smoothness (Lt) and data-driven regulariza-
tion (Ld).

locations and corresponding 2D points in the image:

Lf =
∑

X↔x∈U

∥ΠpX− x∥. (3)

where U is the set of dense keypoints in the image, x ∈ R2

obtained from image-based dense UV map predictions [10],
X are the corresponding 3D vertices, and Πp is the camera
projection which is a function of C. Lr measures the differ-
ence between the rendered and detected UV maps, y:

Lr = ∥g(W−1pt,Ct)− y∥, (4)

where g(·) is the differentiable rendering function that ren-
ders the UV coordinates from the 3D body model.

Ld provides the data driven prior on body and camera
poses, i.e., Ld = ∥θ − θ∥+ ∥C−C∥, where θ and C are
the initial body and camera parameters predicted by a state-
of-the-art method [5]. Lt enforces the temporal smoothness
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Figure 2. Network design for our 3D body and camera pose re-
gression network (ftrack). The details for C-BLK, D-BLK, Conv,
and LReLU are described in Figure 3.

[Convolutional Block]

define C-BLK (ic, oc)

- ic: # of input channel

- mc: # of medium channel

- oc: # of output channel

Conv (ic, oc, 3, 1, 1) 

Conv (oc, oc, 3, 1, 1) 

LReLU +Inst.Norm 

LReLU +Inst.Norm 

Conv (oc, oc, 4, 2, 1) 

LReLU +Inst.Norm

[Deconvolutional Block]

define D-BLK (ic, mc, oc)

Input feature

Conv (ic, mc, 3, 1, 1) 

Conv (mc, mc, 3, 1, 1) 

LReLU +Inst.Norm 

LReLU +Inst.Norm 

Conv (mc, mc, 3, 1, 1) 

LReLU +Inst.Norm 

LReLU

Deconv (mc, oc, 4, 2, 1) 
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Figure 3. Implementation details of our convolutional and decon-
volutional blocks. Conv and Deconv denotes convolutional and
deconvolutional layers are constructed based on the parameters:
number of input channels (ic), number of output channels (oc),
filter size, stride, and the size of the zero padding. We set the co-
efficient of the LeakyReLU (LReLU) to 0.2.

over time: Lt = ∥θt − θt−1∥ + ∥θt − θt+1∥ + ∥Ct −
Ct−1∥+ ∥Ct −Ct+1∥.

We enable ftrack using a convolutional neural network.
The details of our network designs are described in Figure 2.
where it predicts the 3D body θ and camera C pose from
an image A.
Evaluation We validate the performance of our 3D pose
tracking method by comparing with previous monocular
image based (SPIN [6] and SMPLx [2]) and video based
(VIBE [5]) 3D body estimation methods.

We use the AIST++ dataset [7] which provides pseudo-
ground truth SMPL fits obtained from multiview images.
For randomly selected four subjects, we select four view-

Sub.1 Sub.2 Sub.3 Sub.4 Avg.
SPIN [6] 16.5±3.7 22.6±6.6 23.4±6.2 21.5±4.4 21.0±5.2
VIBE [5] 13.9±2.9 12.2±2.8 17.7±5.1 15.5±2.9 14.8±3.4
SMPLx [2] 9.0±1.6 10.2±1.7 16.2±10.2 12.1±4.4 11.9±4.5
Ours 8.3±1.1 8.7±2.0 13.7±3.5 11.3±1.9 10.5±2.1

Table 1. We show the mean and std of per-vertex projection error
between the ground truth and estimated 3D bodies for images of
size 512× 512.
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Figure 4. We show the 3D body estimates and color coded 2D
projection errors of our method and baselines for images of size
512× 512.

points and two motion styles (600 frames per motion) re-
sulting in 4800 testing frames per subject. Due to the differ-
ences in the camera models adopted by each method (i.e.,
perspective or orthographic cameras), there exist a scale
ambiguity between the predictions and the ground truth.
Hence, we measure the per-vertex 2D projection error be-
tween the ground truth and predicted 3D body model in
the image space. We provide quantitative and qualitative
results in Table 1 and Figure 4, respectively. By exploit-
ing both temporal cues and dense keypoint estimates, our
method outperforms the previous work.

B. Comparison to 3D based Approach

In Fig. 5 and Table 2, we show qualitative and quanti-
tative comparisons to the recent 3D based method [1] for
neural avatar modeling from a single camera, which explic-
itly reconstruct the geometry of animatable human. This
method cannot effectively produce motion-dependent tex-
ture due to the failure in modeling of 3D deformation for
clothing geometry, leading to rendering results with blurry,
noisy, and static appearance as shown in Fig. 5, upper row.



Figure 5. Qualitative comparison to NeuralAvatar [1]. The color
map represents the per-pixel difference from real images.

MPI Custom 1 Custom 2
NeuralAvatar [1] 0.808 / 15.3 0.860 / 12.2 0.869 / 12.7
Ours 0.825 / 2.82 0.942 / 3.12 0.946 / 3.81

Table 2. Comparison to the 3D method. Two metrics represent
SSIM (↑), LPIPS (↓)×100, respectively. Three datasets are used.
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Figure 6. Results from the model that learns from a small amount
of data (10 % of full training data). The color map shows the pixel-
wise difference of the synthesized image with the ground truth.

C. More results
In Figure 6, we show the qualitative results of our ren-

dering model and the one from DIW [9] which are trained
with a small number of data (10% of the full training data).
This result shows a similar trend as the Table 2 in the main
manuscript.

D. Network Designs for Human Rendering
We learn our motion encoder E∆ and compositional ren-

dering decoders, Es, Ea using convolutional neural net-

works. In this section, we provide the implementation de-
tails of our network designs.
3D Motion Encoder Network, E∆. Figure 7 describes the
network details for our 3D motion encoder E∆. It takes
as input 3D surface normal Nt of the current frame and
velocity Vt for past 10 frames recorded in the UV space of
the body and outputs 3D motion descriptors f t3D.
Shape Decoder Network, Es. Figure 8 describes the net-
work details for our shape decoder network Es which takes
as input the 3D motion descriptor f̂t rendered in the image
space and the predicted shape in the previous time instance
ŝt−1, and outputs the person-specific 2D shape ŝt which is
composed seven category label maps.
Appearance Decoder Network, Ea. Figure 9 describes
the network details for our appearance decoder network Es

which takes as input the projected 3D motion descriptor f̂t
rendered in the image space, predicted shape ŝt, and the pre-
dicted appearance and surface normal in the previous time
instance {Ât−1, n̂t−1}, and outputs the 3D surface normal
n̂t and appearance Ât.
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Figure 7. Network design for our 3D motion encoder (E∆). The details of C-BLK, D-BLK, Conv, and LReLU are described in Figure 3.
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Figure 8. Network design for our shape decoder (Ds). The details of C-BLK, D-BLK, Conv, and LReLU are described in Figure 3.

ෝ𝐧𝑡−1

𝐀𝑡−𝟏

መ𝐟𝑡

ො𝐬𝑡

D
-B

L
K

 (1
0
2
4
, 5

1
2
, 2

5
6
) 

D
-B

L
K

 (5
1
2
, 2

5
6
, 1

2
8
) 

D
-B

L
K

 (2
5
6
, 1

2
8
, 6

4
) 

D
-B

L
K

 (1
2
8
, 6

4
, 6

4
) 

: Concatenate

D
-B

L
K

 (1
0
2
4
, 5

1
2
, 5

1
2
) 

C
-B

L
K

 (6
5
, 6

4
) 

C
-B

L
K

 (6
4
, 1

2
8
) 

C
-B

L
K

 (1
2
8
, 2

5
6
) 

C
-B

L
K

 (2
5
6
, 5

1
2
) 

C
-B

L
K

 (5
1
2
, 5

1
2
) 

C
-B

L
K

 (6
, 6

4
) 

C
-B

L
K

 (6
4
, 1

2
8
) 

C
-B

L
K

 (1
2
8
, 2

5
6
) 

C
-B

L
K

 (2
5
6
, 5

1
2
) 

C
-B

L
K

 (5
1
2
, 5

1
2
) 

C
o
n
v
 (6

4
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 1

3
1
, 1

, 1
, 0

)

C
o
n
v
 (1

2
8
, 1

2
8
, 1

, 1
, 0

) +
 P

R
eL

U

C
o
n
v
 (1

2
8
, 3

, 1
, 1

, 0
) +

 T
an

h

ෝ𝐧𝑡

𝐀𝑡

MLP

Surface normal

Projected 

descriptor

Shape

Appearance

Figure 9. Network design for our appearance decoder (Da). The details of C-BLK, D-BLK, Conv, and LReLU are described in Figure 3.
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