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Abstract

Due to the lack of space in the main paper, we provide more details of the proposed methods and experimental results in the
supplementary material. Specifically, in Sec.1, we provide more details of the feature extraction module for spherical images.
Sec.2 and Sec.3 explain explicitly the proposed sphere-oriented cell decoding in SLIIF module and the feature loss. Sec.4
and Sec.5 provide implementation details and more limitations. Lastly, Sec.6 presents additional results about experiments
and ablation study.

Figure 1. Proposed new data structure.

1. More Details of Feature Extraction for Spherical Images
1.1. Data structure

As shown in Fig. 1, we make the implementation of up/downward kernels possible with 5×3 convolution by using the
proposed new data structure. At this time, among the pixels of the 5×3 convolution kernel, five pixels not included in the
actual kernel are always multiplied by weight 0, and weight updating is not performed.

We also always conduct feature padding with neighborhood pixels directly before convolution to avoid losing the conti-
nuity of the spherical data structure. The padding size is 2 × 1 considering the kernel size.

Finally, as the convolutional kernels for odd-numbered and even-numbered rows are different, the convolution stride for
the row axis is set to 2 such that convolution for the kernel can be performed for each row. After convolution for each kernel,
the two feature maps are concatenated according to the order of the rows.
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1.2. Kernel Weight Sharing

Figure 2. Geometry-Aligned Convolution(GA-Conv) and equivalent kernel.

In this subsection, we describe in detail the derivation of the kernel weight sharing scheme for GA-Conv (Geometry-
Aligned Convolution). As shown in Fig. 2, we set the three vertices of the center pixel to the imaginary pixels Pa, Pb, and Pc

to equalize the shapes of the pixel combinations. At this time, each pixel can be regarded as the midpoint of the surrounding
four pixels. Therefore, the values of pixels Pa, Pb, and Pc are set as the mean value of the four pixels through the formulas
in Fig. 2. We present a method by which to utilize weight sharing without actually creating a pixel when implementing this
setting. As shown in Fig. 2, convolution with pixel values and kernel weights is the same as the value convolutional using
the equivalent kernel. Therefore, an appropriate weight sharing scheme is used when using GA-Conv, and through this, more
sophisticated kernel weight sharing is possible without kernel rotation as previously performed in SpherePHD.

2. Sphere-oriented Cell Decoding

In this section, we explain more details about sphere-oriented cell-decoding method. A rectangle
−−→
∆X,

−−→
∆Y on the pro-

jected plane makes parallelogram
−→
∆x,
−→
∆y on the unit sphere. To define a cell decoding according to point p on unit sphere,

we initially define a vector (−→n1,
−→n2). Let o = center point(r = 0), p = (θ, ϕ) s.t. point p we want to get RGB and

vx = (θv, ϕv)s.t. one of vertices 1, 2, 3. Then,

−→n1 = −→vxp = (θ − θv)θ̂ + (ϕ− ϕv) sin θϕ̂ (1)

−→n2 = −→op×−→n1 = −(ϕ− ϕv) sin θθ̂ + (θ − θv)ϕ̂ (2)

To make (−→n1,
−→n2) as unit vectors, the vectors are scaled as −→n1 ← −→n1/ ∥ −→n1 ∥ and −→n2 ← −→n2/ ∥ −→n2 ∥. By these equations, we

can find the variables α1, β1, α2, β2 that satisfies the following equation,(
θ̂

ϕ̂

)
=

(
α1 β1

α2 β2

)(−→n1−→n2

)
(3)

To denote vectors
−→
∆x,
−→
∆y representing parallelogram sphere cells using −→n1,

−→n2, we first denote using θ̂, ϕ̂ through the
projection process of each projection type, as shown in Fig. 3. Therefore, we have to find as the equation,

−→
∆x = γ1θ̂ + δ1ϕ̂−→
∆y = γ2θ̂ + δ2ϕ̂

)
⇒ decided by output of

projection type (4)



Table 1. Derivation of
−→
∆x,

−→
∆y for various projection types.

ERP Perspective(−→
∆x−→
∆y

)
=
(
∆Y sin θ 0

0 ∆X

) (
θ̂
ϕ̂

) (−→
∆x−→
∆y

)
=

(
α∆X cos θ sinϕ α∆X cosϕ
−α∆Y sin θ 0

)(
θ̂
ϕ̂

)
Fisheye(−→

∆x−→
∆y

)
=
(
α∆X cos θ sinϕ+ α∆XFX(X,Y ) cos θ cosϕ α∆X cosϕ− α∆XFX(X,Y ) sinϕ
−α∆Y sin θ + α∆Y FY (X,Y ) cos θ cosϕ −α∆Y FY (X,Y ) sinϕ

) (
θ̂
ϕ̂

)

Figure 3. Visualization of projection process of each projection type.

Let P be the point (X,Y ) where point p is projected onto the projected plane. As the derivation results, each projection
can be organized as a table. 1. Fisheye projection type is the result of the projection process by setting the reflective surface
Z = F (X,Y ) as mentioned in [2]. Also, in case of Perspective projection,

α = 1√
tan2 ϕ+ 1

tan2 θ cos2 ϕ

,∆X =
2 tan M

2

b ,∆Y =
2 tan N

2

a (5)

in case of Fisheye projection,

α = 1√
X2+Y 2+FX(X,Y )2

,∆X = F (X′,0)
b s.t. X′

F (X′,0) = tan M
2 ,∆Y = F (0,Y ′)

a s.t. Y ′

F (0,Y ′) = tan N
2 (6)

Finally, we are able to represent
−→
∆x,
−→
∆y using two vectors −→n1,

−→n2 by Eqs. (3) and (4).(−→
∆x
−→
∆y

)
=

(
γ1 δ1
γ2 δ2

)(
α1 β1

α2 β2

)(−→n1−→n2

)
(7)

We then find a
−−−→
∆xeq,

−−−→
∆yeq as mentioned in the main paper.

3. Details of Feature Loss
In this section, we explain more details about feature loss. The feature loss takes advantage of the SR features generated

from other projection types by utilizing the SLIIF module. It induces spherical features that can be easily converted into
features appropriate for arbitrary projection types. However, applying it to the entire feature map causes performance degra-
dation, so we designed a ‘feature mask extraction module’ to apply the feature loss only to areas with reasonable performance
in the feature map generated from ERP and CubeMap.



Figure 4. Visual effectiveness of feature loss on the ERP image.

In this module, to activate the spatial areas with small errors, the spatial mask is generated from the error map (difference
between SR output and GT), while the channel mask is generated through GAP to extract the activated channels.To prevent
masks from becoming 0, as Fig. 7 in the main paper, we perform a softmax function before extracting the spatial/channel
masks. Therefore, the sum of values in each mask should be 1.

The feature loss subtly minimizes feature uncertainty among different projection types, helping to improve better the
perceptual quality of the SR images, as verified in Fig. 4. Using the feature loss (2nd column) produces a more precise image
pattern and details.

4. Implementation Details
The spherical feature extractor is implemented using GA-conv based on EDSR [1] and outputs a feature with 128 dimen-

sions. The RGB prediction decoding function fdec is a 5-layer MLP, and the hidden layer dimension is 256. The EDSR
models, pre-trained with the ODI-SR dataset and frozen, are used to extract features from ERP and cube map images for
feature loss. SphereSR is trained for 500 epochs using the Adam Optimizer with a batch size of 1. The initial learning rate is
set to 0.0001 with a tenfold reduction after 400 epochs. The feature loss scale parameter λ is set to 0 for the first 100 epochs
and set to 0.3 for the rest of the training.

5. More Limitations
The spherical feature map has uniform information in all directions. Therefore, on the pole area of the ERP image, SR for

an extremely high scale factor is inevitably made due to distortion. If the pole area of the ERP image has a complex texture,
ours has poor performance compared to other ERP-based models. Future studies will therefore need to improve this case.

6. Visualization
6.1. Additional Qualitative Comparison

We additionally visualize the qualitative comparison with the proposed method and other methods on the ODI-SR dataset
and the SUN360 Panorama dataset in Fig. 5 and Fig. 6. We trained the proposed network using the ×8 ERP images on the
ODI-SR dataset. We then conduct an experiment involving conversion to a FOV 90◦ perspective image with a size 512×512.
We also conduct another experiment on the conversion to a FOV 180◦ fisheye image with a size 1024×1024.

6.2. Visualization of SR with Arbitrary Projection Types

We additionally visualize the SR results for arbitrary projection type from LR ERP images in Fig. 7 and Fig. 8. We also
visualize images for different directions to show that our model can predict SR results for arbitrary directions.
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Figure 5. Visual comparisons of ×8 SR results of ERP, perspective, fisheye projection on SUN 360 Panorama dataset.

Figure 6. Visual comparisons of ×8 SR results of ERP, perspective, fisheye projection on ODI-SR dataset.



Figure 7. Visualization of SR results with various projection types on the SUN360 Panorama dataset.



Figure 8. Visualization of SR results with various projection types on the ODI-SR dataset.


