Supplementary
1. More Ablation Analysis

In this section, we conduct more ablation studies on mul-
tiple parameters that are used in Algorithm 1 and 2.

1.1. Visualization of Partial/Occluded Objects

As we mentioned in the main text, our method is robust in
detecting partial/occluded objects. Here we visualize several
objects of different partial indexes in Figure 1. We can see
that small partial indexes indicate occluded objects, while
large partial indexes indicate complete objects. Our method
gives higher average recall on partial objects compared with
previous methods.
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Figure 1. Point clouds of chairs with different partial indexes in
ScanNet dataset. We see that small partial indexes refer to objects
are occluded and partial, while objects with large partial indexes
are more complete.

1.2. Effects of 6 in Bounding Box Generation

In Algorithm 2, we iteratively generate bounding boxes
whenever the maximum value of the heatmap is above a
threshold §. Intuitively, with a small threshold, more object
candidates are detected but may degrade the performance
by introducing false positives at the same time. With a
large threshold, our model is more confident on the detected
bounding boxes, but may lower the recall by missing small
objects.

Here we investigate how this threshold influences the final
mAP5( on ScanNet val dataset. quantitative results are given
in Figure 2. The optimal threshold for ¢ lies around 60, with
a balance between recall and precision.

1.3. Effects of K in Canonical Voting Process

We report our joint model’s average processing time per
scan and mAPs5 for different values of K of Algorithm 1 in
Figure 3. We see as K increases, the processing time arises
linearly because of the exhaustive search; while the mAP
gets saturated after K = 120.

2. Extension to Full 3D Rotations

Though we mainly conduct experiments on common
indoor scenes, which usually contains only 1D rotations
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Figure 2. mAP results on ScanNet val dataset under different
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Figure 3. Average processing time and mAP5¢ of our joint model
on ScanNet. K = 120 keeps a balance between time and accuracy.

around the gravity axis, our voting scheme can be extended
to full 3D rotation and be applied to NOCS REAL275 dataset
(a 6D pose estimation benchmark). Specifically, we now
treat every pixel in a given RGB-D frame as a 3D point
which generates center offsets over 47” solid angles (K is res-
olution) instead of 27” circle angles. After candidate centers
have been proposed, we collect all the points that contribute
to these centers within some radius tolerance. The LCCs of
these points are then used with the Umeyama algorithm to
solve 3D rotations in closed form. Interestingly, our voting
scheme on NOCS REAL275 achieves 17.0, 40.7 and 45.8
mAP for (5°, 5 cm), (10°, 5 cm) and (10°, 10 cm) metrics

respectively, beating NOCS [2] baseline by a large margin.

3. Details of Vote Map Guided Refinement
Module on SUN RGB-D dataset

For SUN RGB-D dataset, due to the lack of symmetric
information and limited training data, instead of a determinis-



tic bounding box generation procedure, we sample multiple
box candidates with probability proportional to the vote map,
and then leverage a refinement module to further refine these
bounding boxes. The pipeline is shown in Figure 4. The
vote map generation is exactly the same as that in Algorithm
1. Nevertheless, instead of direct bounding box generation
with back-projection checking, we use a neural refinement
module with learnable parameters to generate final bounding
boxes. Specifically, we first generate 512 possible object
center candidates according to the 3D vote map. The vote
map is normalized to form a proper distribution. Then these
vote proposals are then passed through a proposal refinement
and classification module that is similar to BRNet. Every ob-
ject proposal is aggregated with its surrounding back-traced
representative points, using max pooling on their high di-
mensional embeddings generated by PointNet++. For more
details of this refinement module, we refer the reader to
BRNet [1].
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Figure 4. The architecture of our method on SUN RGB-D dataset.
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