
7. Appendix
In the appendix, we first supplement the content men-

tioned in the Paper. According to the order of contents in
the Paper, we introduce the following five parts:

• (1) Convergence of Our Difficulty Model;

• (2) Settings for Binary Long-Tailed MNIST;

• (3) Simulations for Learning Process of Instances;

• (4) Datasets in Generality Experiments;

• (5) Results on iNaturalist 2019;

• (6) Limitations and Future Works.

Besides, we present the implementation details of our ex-
periments in Sec. 7.8.

7.1. Convergence of Our Difficulty Model

In this section, we prove the convergence of our difficulty
model (i.e., Eq. (4)). First, we assume that the model Net
is converged when t → ∞. Therefore, for any instance zi
(zi ∈ D, i = 1, . . . , N), we have dui,t → 0 and dl i,t → 0.

∴ ||d⃗i,t|| → 0.
∵ ||D⃗i,t|| = || ⃗Di,t−1+ d⃗i,t|| ≤ || ⃗Di,t−1||+ ||d⃗i,t|| ≤

|| ⃗Di,t−1||.
∵ ⃗Di,t−1 · ⃗di,t−1 ≥ 0,
∴ ||D⃗i,t|| = || ⃗Di,t−1 + d⃗i,t|| ≥ || ⃗Di,t−1||.
∴ || ⃗Di,t−1|| = ||D⃗i,t||, when t→∞.
In conclusion, the vector D⃗i,t is converged by norm ||·||.

7.2. Settings for Binary Long-Tailed MNIST

The simulation experiments are carried out on the task
of the binary classification for odd and even numbers in the
long-tailed MNIST.

MNIST is a popular dataset of handwritten dight recog-
nition. It has 60000 training cases and 10000 testing
instances. each sample has 784 features to express a
28*28 picture. Labels 0-9 present the Arabic numbers 0-9.
MNIST is a classic and simple dataset without class-level
imbalance.

According to the construction method of Long-tailed CI-
FAR, minority classes are created with a given imbalance
ratio by under-sampling. Specifically, the training instances
per class are reduced, according to an exponential function
n = niµ

i, where i is the class index (indexed from 0), ni is
the original number of class i and µ ∈ (0, 1). And we de-
fine the imbalance ratio as nmax

nmin
. The sampling rate of each

digit with different imbalance ratios is illustrated in Fig. 5.
In particular, simulation experiments are done on the bi-

nary classification of evens(digits 0,2,4,6,8) and odds(digits
1,3,5,7,9) on the long-tailed MNIST. In the training process,

Figure 5. Sample Rate of Each Digit for Long-Tailed MNIST.

classification models do not know the digit labels of pic-
tures.

7.3. Simulations for Learning Process of Instances

In the Paper, we conducted simulations for instances
with different unlearning probabilities. In this section, we
introduce such simulations in detail. In order to observe the
relationship between the unlearning frequency and our in-
stance difficulty model more generally. We model the learn-
ing (i.e., training) process of a certain instance as a random
walk process. The instance walks toward the learning di-
rection, but it sometimes walks toward the back (i.e., un-
learning direction). Moreover, the probability of backward
walking is different for different instances.

Specifically, follow the formulation in Sec. 3.1, we fur-
ther set pi = Net(xi) = softmax (hi), where hi =
(hi,1, . . . , hi,k) represents the preference(or called logits)
of different k classes for instance zi. In the simulation train-
ing process, hi,yi

is decreased by α with a probability of β,
hi,yi

is increased by α with a probability of 1− β, where α
denotes the walking pace length, β denotes the unlearning
probability.

For ”Easy” case, β = 10%. For ”Normal” case, β =
20%. For ”Hard” case, β = 40%. Then set k to 10 and α to
0.1. Our simulation results in Fig. 4 will be reproduced.

By the way, we present the effect of parameter c in
Eq. (4) by Fig. 6. We can see that c controls the sensitiv-
ity of our difficulty model for the variation of predictions.
A larger c leads to smaller fluctuation of instance difficulty.

7.4. Datasets in Generality Experiments

We adopt 10 tiny classification datasets in the UCI ma-
chine learning repository and 1 large-scale dataset.

The tiny datasets are Wine, Statlog.(Heart), Wall-
Following Robot Navigation Data, Ecoli, Glass Identifi-
cation, Balance Scale, Iris, Seeds, Contraceptive Method
Choice, Connectionist Bench(Sonar, Mines vs. Rocks).
In the Paper, we call Statlog.(Heart) as Heart, call Wall-
Following Robot Navigation Data as Robot, call Glass Iden-

0 100 200 300 400 500
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 v
al

ue

difficulty(c=0.01)
difficulty(c=0.02)
difficulty(c=0.05)
difficulty(c=0.10)

(a) Easy

0 100 200 300 400 500
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 v
al

ue

difficulty(c=0.01)
difficulty(c=0.02)
difficulty(c=0.05)
difficulty(c=0.10)

(b) Normal

0 100 200 300 400 500
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 v
al

ue

difficulty(c=0.01)
difficulty(c=0.02)
difficulty(c=0.05)
difficulty(c=0.10)

(c) Hard

Figure 6. Difficulty with Different c in Training.

tification as Glass, call Balance Scale as Balance, call Con-
traceptive Method Choice as CMC and call Connectionist
Bench(Sonar, Mines vs. Rocks) as Sonar. We randomly
choose 80% instances of each dataset as the training data
and the rest part as the test data.

The large-scale dataset is iNaturalist 2019. It is a real-
world long-tailed dataset that contains 265,213 training im-
ages from 1010 classes.

Table 6. Accuracy % on iNaturalist 2019. ResNet-m denotes the
ResNet model with m layers.

Networks ResNet-50 ResNet-101

Base Model 70.19 72.84
Focal Loss 70.24 73.13

Class-Balance Loss 70.83 73.17
Our Method 71.08 73.32

7.5. Results on iNaturalist 2019

We compare our method with baselines, which adjusts
the data distribution on the class level, on a large-scale
dataset named iNaturalist 2019, whose results are shown in
Tab. 6.

7.6. Limitations and Future Works

In this section, we discuss the limitations of our method
in two aspects: (1) Training speed; (2) Influences of Noises.

Training Speed. In the actual training process, our
method needs to infer the entire training set when updat-
ing the sampling weights. If the number of weight updates
is greatly reduced, the performance of our method will de-
crease. Therefore, our method is not applicable in some
scenes with high requirements for training speed. However,
based on the analysis of the training process in Sec. 3.3,
there are many variants of difficulty modeling. How to es-
timate difficulty faster and more accurately is an interesting
and challenging problem in future works.

Influences of Noises. Our method is easily affected by
noises that denote the instances with wrong labels. Noises
are extremely difficult to be learned by the model. If the
weights of noises are set too high, the learning of the model
will be terribly affected. In fact, our method already has
a certain ability to recognize noises since noises usually
are the most difficult instances. We can simply use trun-
cation to mitigate the effects of noises. Some details and
experiments are shown in the next section. However, dis-
tinguishing right-labeled difficult instances from noises is
still a great challenge. We can incorporate noise detection
technology into the definition of difficulty in future works.

7.7. Discussion for Noise Influences

For a classification dataset, the class labels of instances
are usually manually annotated. Therefore, the labels of
some instances may be wrong. We call such wrong labeled
instances as noises. Obviously, noises are difficult to learn
by the models. Empirically, our method tends to give such
noises higher sampling weights, which is harmful to the
training process. So when the noise problem in the dataset
is serious, the performance of our method may decrease.

In fact, our method has the ability to detect noise, be-
cause noises usually are assigned the highest weights by

Figure 7. Noise Detection by The Weights of Our Method

Algorithm 2 Noise Resistance Strategy

1: Input: weight ω, noise rate γ, data size N
2: n← Integer(γ ∗N)
3: if n > 0 then
4: I ← indices of Top-m values in ω
5: ωI ← 0
6: end if
7: ωi ← ωi∑N

j=1 ωj
for i = 1, . . . , N

8: Return ω

our method. Specifically, we discuss this phenomenon in
Sec. 7.7.1. In light of this, in actual training, we adopt a
simple technique to help the model resist noises. We intro-
duce such a technique in Sec. 7.7.2.

7.7.1 Noise Detection Experiments

To test the ability of our method for detecting the noises,
we randomly choose 1% instances from long-tailed MNIST
and change their labels to make some noise instances. Af-
ter training, we sort the instances in descending order of
weight and then observe the top part of the rank. As shown
in Fig. 7, we can see that noises usually are assigned the
highest weights by our method. In particular, in the top-
0.01% to top-0.03%, almost all instances are noises.

7.7.2 Noise Resistance Strategy

Assume that the noise rate is γ, for the entire dataset, the
total number of noises is n (n = N ∗ γ). Since noises
usually have higher sampling weights, we treat the top-n
instances with the largest weight as noises. Specifically, we
call the top-n part of the rank as the abandoned area. In the
training process, the sampling weights of instances in the
abandoned area are reset as 0. The algorithm is presented in
Algorithm 2.

In the early stage of training, it is difficult for our method
to directly capture the noises in the abandoned area. How-
ever, with the generalization ability of the model, even
though normal instances in the abandoned area are not
trained, they can gradually be learned and escape from the
abandoned area due to the training of the outside instances

from the same class. While the noises are often isolated,
and they are incompatible with other normal instances in the
training of the model. When the noises fall into the aban-
doned area, they are difficult to be rescued by the learning
of other instances.

However, there may be correctly labeled instances whose
learning difficulties are similar to the noises. Our method
can not distinguish them from noise and may abandon them.
Therefore, our current noise resistance strategy can not
completely solve the problem of noises. In future works,
we hope to combine some more effective noise recognition
methods with our methods to further improve the generality
of our methods.

7.8. Reproducibility

In this section, we introduce the implementation details
of our experiments.

7.8.1 Environments

Experiments are set in the python environment, and the
main information of environment is:

• Python version: 3.6,

• Pytorch version: 1.7.1,

• torchvision version: 0.8.2,

• GPU: Tesla K80,

• Cuda version: 9.2.

• Random seed: 0

7.8.2 Parameters

The models are trained by using SGD optimizer with mo-
mentum 0.9. Specially,

• For experiments on long-tailed CIFAR: c = 10, γ =
0.001.

• For simulation experiments: c = 1, γ = 0.

• For experiments on iNaturalist: c = 10, γ = 0.001.

• For experiments on UCI datasets: γ = 0. In particular,
we set c = 0.1 for ecoli and heart, set c = 1 for sonar,
balance, glass, and iris, set set c = 10 for cmc, robot,
seeds and wine.

Here, γ denotes the parameter for the noise rate which is
introduced in Sec. 7.7. Usually, we do not know how many
noise instances there are, so we optimize the final result
with adjusting γ. In the actual tuning, we generally set
0 ≤ γ ≤ 0.001.

