
Supplementary Materials for
CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Qihang Yu1 Huiyu Wang1 Dahun Kim2 Siyuan Qiao3 Maxwell Collins3 Yukun Zhu3

Hartwig Adam3 Alan Yuille1 Liang-Chieh Chen3

1Johns Hopkins University 2KAIST 3Google Research

In the supplementary materials, we provide more tech-
nical details, along with more ablation and comparison re-
sults with other concurrent works. We also include more
visualizations and comparisons over the baselines. Addi-
tionally, we provide a comprehensive comparison, in terms
of training epochs, memory cost, parameters, FLOPs, and
FPS, across different methods. We also report results with
a ResNet-50 backbone for a fair comparison across differ-
ent methods, along with additional results on Cityscapes.
Finally, we summarize the limitations of our work and po-
tential negative impacts.

1. More Technical Details
Backbones. In Fig. 1, we provide an architectural compar-
ison of MaX-DeepLab-S [9] and CMT-DeepLab built upon
Axial-R50/104 [10]. Specifically, we simplify the back-
bone from MaX-DeepLab-S [9] by removing transformer
modules in the backbone (light blue), and stacking more
blocks in the decoder module (light orange). The Axial-
R104 backbone is obtained by scaling up Axial-R50 (i.e.,
four times more layers in the stage-4).
Recursive Feature Network. We construct Recursive Fea-
ture Network (RFN) in a manner similar to [7]. More
specifically, we stack two models together, with a skip-
connection from the decoder features at stride 4 in the first
network to the encoder features at stride 4 in the second
network. Instead of using the complicated fusion module
proposed in [7], we simply average the features for fusion.
Moreover, the two networks share the same set of cluster
centers (i.e., object queries), which are sequentially updated
from the first network to the second one. We also add super-
vision for the first network but use the Hungarian matching
results based on the final output.

2. More Results and In-depth Analysis
Effect of frequent pixel update (our second solution). As
discussed in the main paper, the clustering results will be
also used to update pixel features besides cluster centers to
ensure a frequent pixel update. We tried removing the pixel

feature updates from clustering transformer, which leads to
a degradation of 0.4% PQ.
Comparison with more concurrent works. Also shown
in Tab. 1, we compare our CMT-DeepLab with the baseline
MaX-DeepLab [9], and concurrent works MaskFormer [2]
and K-Net [11] on the test-dev set. As shown in the ta-
ble, our best model (using 200K iterations and RFN) at-
tains the performance of 55.7% PQ on the test-dev set,
which is 4.4% and 2.4% better than MaX-DeepLab-L [9]
and MaskFormer [2]. Our best model is 0.5% PQ better
than K-Net [11], which adopts a different framework (i.e.,
dynamic kernels) than mask-transformer-based approaches.
In addition to PQ, we further look into RQ and SQ for per-
formance analysis. We observe that with a similar perfor-
mance to K-Net [11] in RQ, our best model performs bet-
ter in SQ. Specifically, our best model yields 83.6% SQ,
which is 1.2%, 1.6%, and 1.1% better than K-Net, Mask-
Former, and MaX-DeepLab-L, respectively. Interestingly,
our lightweight variant, CMT-DeepLab with Axial-R50,
achieves 83.0% SQ, which is still better than all the other
methods. We attribute our better performance in SQ to the
proposed clustering mask transformer layer, which yields
denser attention maps to facilitate segmentation tasks.
Accuracy-cost Trade-off Comparison. We provide a com-
prehensive comparison of training cost (epochs, memory),
model size (params, FLOPs, FPS), and performance (PQ)
in Tab. 2. The training memory is measured on a TPU-
v4, while other statistics are measured with a Tesla V100-
SXM2 GPU. We use TensorFlow 2.7, cuda 11.0, input size
1200 × 800, and batch size 1. For MaskFormer (PyTorch-
based), we cite the numbers from their paper. As shown
in the table, our CMT-DeepLab-S (Axial-R50) outperforms
MaskFormer-SwinB by 1.2% PQ with comparable model
size and inference cost. Our CMT-DeepLab-S also outper-
forms MaskFormer-SwinL while using much fewer model
parameters and running faster. All our models outperform
MaX-DeepLab. Notably, our best model CMT-DeepLab-
L-RFN (Axial-R104-RFN) outperforms MaX-DeepLab-L
by 4.2% PQ while using only 60% model parameters and
33.6% FLOPs.

1



1/4
256

3x axial-block 
w/ transformer

3x bottleneck

4x bottleneck

6x axial-block

1/8
512

1/16
1024

1/4
256

1/8
512

1x axial-block 
w/ transformer

1x bottleneck

1/16
2048

1/16
2048

1x bottleneck

sep 5x5, 256

inception stem 1/4
128

1/4
2563x bottleneck

4x bottleneck

6x axial-block

1/8
512

1/16
1024

1/4
256

1/8
512

3x axial-block
w/ transformer

1x bottleneck

1/16
2048

1x bottleneck

sep 5x5, 256

inception stem
1/4
128

3x axial-block
w/ transformer

3x axial-block 1/16
2048

1/16
1024

1/4
2563x bottleneck

4x bottleneck

24x axial-block

1/8
512

1/16
1024

1/4
256

1/8
512

3x axial-block
w/ transformer

1x bottleneck

1/16
2048

1x bottleneck

sep 5x5, 256

inception stem
1/4
128

3x axial-block
w/ transformer

3x axial-block 1/16
2048

1/16
1024

(a) MaX-DeepLab-S
61.9M

(b) CMT-DeepLab (Axial-R50)
94.9M

(c) CMT-DeepLab (Axial-R104)
135.2M

Figure 1. A visual comparison of architecture between MaX-DeepLab-S and CMT-DeepLab. Pretrained backbone part is labeled in blue
color.

val-set test-dev
method backbone params PQ PQTh PQSt PQ PQTh PQSt SQ RQ
MaX-DeepLab-S [9] MaX-S [9] 61.9M 48.4 53.0 41.5 49.0 54.0 41.6 - -
MaX-DeepLab-L [9] MaX-L [9] 451M 51.1 57.0 42.2 51.3 57.2 42.4 82.5 61.3
MaskFormer† [2] Swin-B‡ [6] 102M 51.8 56.9 44.1 - - - - -
MaskFormer† [2] Swin-L‡ [6] 212M 52.7 58.5 44.0 53.3 59.1 44.5 82.0 64.1
K-Net† [11] R101-FPN [4] - 49.6 55.1 41.4 - - - - -
K-Net† [11] R101-FPN-DCN [3] - 48.3 54.0 39.7 - - - - -
K-Net† [11] Swin-L‡ [6] - 54.6 60.2 46.0 55.2 61.2 46.2 82.4 66.1

CMT-DeepLab Axial-R50‡ [10] 94.9M 53.0 57.7 45.9 53.4 58.3 46.0 83.0 63.6
CMT-DeepLab Axial-R104‡ 135.2M 54.1 58.8 47.1 54.5 59.6 46.9 83.2 64.7
CMT-DeepLab Axial-R104‡-RFN 270.3M 55.1 60.6 46.8 55.4 61.0 47.0 83.5 65.6
CMT-DeepLab (iter 200k) Axial-R104‡-RFN 270.3M 55.3 61.0 46.6 55.7 61.6 46.8 83.6 65.9

Table 1. Results comparison on COCO val and test-dev set. ‡: ImageNet-22K pretraining. †: Concurrent works. We update comparison
with concurrent works, and also our improved results with longer training iterations.

method epochs memory params FLOPs FPS PQ
MaskFormer-SwinB [2] 300 - 102M 411G 8.4 51.8
MaskFormer-SwinL [2] 300 - 212M 792G 5.2 52.7
MaX-DeepLab-S [9] 216 6.3G 62M 291G 11.9 48.4
MaX-DeepLab-L [9] 216 28.7G 451M 3317G 2.2 51.1
CMT-DeepLab-S 54 10.2G 95M 396G 8.1 53.0
CMT-DeepLab-L 54 11.8G 135M 553G 6.0 54.1
CMT-DeepLab-L-RFN 54 25.8G 270M 1114G 3.2 55.1
CMT-DeepLab-L-RFN 108 25.8G 270M 1114G 3.2 55.3

Table 2. A comprehensive accuracy-cost trade-off comparison.

Backbone Differences. As different backbones are adopted
for different methods (e.g., MaX-S/L [9], Swin [6]), it hin-
ders a direct and fair comparison across different meth-
ods. To this end, we provide results based on a ResNet-
50 backbone across different models on COCO val set. As

MaskFormer [2] K-Net [11] MaX-DeepLab [9] CMT-DeepLab
PQ 46.5 47.1 46.0 48.5

Table 3. Results comparison with ResNet-50 as the backbone.

shown in Tab. 3, our CMT-DeepLab significantly outper-
forms MaX-DeepLab and concurrent works (MaskFormer
and K-Net).
Results on Cityscapes. We provide additional results on
Cityscapes in Tab. 4. For a fair comparison, we adopt the
same setting, including pretrain weights (IN-1k), training
hyper-parameters (e.g., iterations 60k, learning rate 3e-4,
crop size 1025×2049), and post-processing scheme (pixel-
wise argmax as in MaX-DeepLab). As shown in the ta-
ble, our CMT-DeepLab-S significantly outperforms MaX-
DeepLab-S by 2.9% PQ and 1.6% mIoU.



method PQ RQ SQ mIoU
MaX-DeepLab-S 61.7 74.5 81.5 79.8
CMT-DeepLab-S 64.6 77.4 82.6 81.4

Table 4. Cityscapes val set results.

3. Visual Comparison
Visualization Details. To visually compare the clustering
results/attention maps, we firstly follow DETR [1] to aver-
age values across multi-heads to obtain a single attention
map, which is then transformed into a heatmap in a manner
similar to CAM [12] by normalizing the values to the range
[0, 255]. Note that we do not apply any smoothing tech-
niques (e.g., square root), which in fact adjust the learned
attention values. These differences make the visualization
differ from those in the paper of MaX-DeepLab [9]. All vi-
sualizations are done with CMT-DeepLab based on Axial-
R50, and MaX-DeepLab-S, with input size 641× 641.
Clustering results. In Fig. 2, Fig. 3, Fig. 4, and Fig. 5,
we provide more clustering visualization results. We ob-
serve the same trend as we presented in the main paper that
the clustering results, providing denser attention maps, are
close-to-random at the beginning and are gradually refined
to focus on different objects. Interestingly, we also observe
some exceptions (see Fig. 2, Fig. 3, Fig. 4), where the clus-
tering results start with a good semantic-level clustering, in-
dicating that some cluster centers can embed semantic in-
formation and thus specialize in some classes.
Attention map comparison with MaX-DeepLab.
In Fig. 6, Fig. 7, and Fig. 8, we show more attention
map comparison with MaX-DeepLab. As shown in those
figures, CMT-DeepLab provides a much denser attention
map than MaX-DeepLab.

4. Limitations
Motivated from a clustering perspective, CMT-DeepLab

generates denser attention maps and thus leads to a supe-
rior performance in the segmentation task. However, the
proposed clustering mask transformer, though significantly
improves the segmentation quality (SQ), does not bring
the same-level performance boost on the recognition ability
(RQ). Specifically, we have adopted some simple scaling-
up strategies, including increasing model size, input size,
or training iterations. Those strategies result in a large per-
formance gain in RQ as a compensation, but with a cost at
parameters, computation, or training time. It thus remains
an interesting problem to explore in the future that how to
improve its recognition ability efficiently and effectively.

5. Potential Negative Impacts
In this paper, we present a new panoptic segmenta-

tion framework, inspired by the traditional clustering-based

algorithm, generates denser attention maps and further
achieves new state-of-the-art performance. The findings de-
scribed in this paper can potentially help advance the re-
search in developing stronger, faster, and more elegant end-
to-end segmentation methods. However, we also note that
there is a long-lasting debate on the impacts of AI on hu-
man world. As a method improving the fundamental task
in computer vision, our work also advances the develop-
ment of AI, which means there could be both beneficial and
harmful influences depending on the users.

License of used assets. COCO dataset [5]: CC-by 4.0. Im-
ageNet [8]: https://image-net.org/download.
php.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 3

[2] Bowen Cheng, Alexander G Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In NeurIPS, 2021. 1, 2

[3] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, 2017. 2

[4] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 2

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 3

[6] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2

[7] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detec-
tors: Detecting objects with recursive feature pyramid and
switchable atrous convolution. arXiv:2006.02334, 2020. 1

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. IJCV, 115:211–252, 2015. 3

[9] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. Max-deeplab: End-to-end panoptic seg-
mentation with mask transformers. In CVPR, 2021. 1, 2, 3,
6

[10] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-DeepLab: Stand-
Alone Axial-Attention for Panoptic Segmentation. In ECCV,
2020. 1, 2

[11] Wenwei Zhang, Jiangmiao Pang, Kai Chen, and
Chen Change Loy. K-net: Towards unified image seg-
mentation. In NeurIPS, 2021. 1, 2



Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 2. Visualization of clustering results at different stages (i.e., transformer layers). We note that clustering results for person (row 1)
and skis (row 3) start from a close-to-random distribution at the beginning and are gradually refined to focus on corresponding target. But
we also find some cluster centers, e.g., sky in row 2, are specialized in some semantic classes and start at a good semantic clustering.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 3. Visualization of clustering results at different stages (i.e., transformer layers). Both row 1 and 2 experience a semantic-to-instance
refinement during the clustering process (e.g., in col 3, both clustering results capture all zebras.), which finally falls onto corresponding
zebra. The cluster center on row 3 initializes with a good clustering result for grass, which coincides with the observation that some cluster
centers intrinsically embed semantic information.

[12] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 3



Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 4. Visualization of clustering results at different stages (i.e., transformer layers). Row 1, 3 gradually falls into the target person and
skateboard, while row 2 starts with a good clustering for grass.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 5. Visualization of clustering results at different stages (i.e., transformer layers). Each row corresponds to an elephant instance
prediction. Similarly, most results start from a close-to-random clustering and gradually converge to the target in a semantic-to-instance
manner.



toiletperson cat cell phone

MaX-DeepLab

CMT-DeepLab

prediction prediction

Figure 6. Visual comparison between CMT-DeepLab and MaX-DeepLab [9]. CMT-DeepLab provides a denser attention map to update
cluster centers, which leads to superior performance in dense prediction tasks.

person

MaX-DeepLab

CMT-DeepLab

person person sheep sheep prediction

Figure 7. Visual comparison between CMT-DeepLab and MaX-DeepLab [9]. CMT-DeepLab provides a denser attention map to update
cluster centers, which leads to superior performance in dense prediction tasks.

person

MaX-DeepLab

CMT-DeepLab

person person tie prediction

Figure 8. Visual comparison between CMT-DeepLab and MaX-DeepLab [9]. CMT-DeepLab provides a denser attention map to update
cluster centers, which leads to superior performance in dense prediction tasks.


