
Deep Anomaly Discovery from Unlabeled Videos via
Normality Advantage and Self-Paced Refinement

—Supplementary Material—

1. Dataset Details
All benchmark datasets adopted in our paper are publicly

available datasets that are frequently-used for VAD in the
literature. The official agents of those datasets have guaran-
teed that all data are collected, released, and used with the
consent of subjects. We provide the public download links
to these datasets in the footnote123.

2. Foreground Localization for LBR

Algorithm 1 Foreground Localization
Input: A video frame I and its optical flow OF , pre-trained object de-

tector M , threshold Tc, Ta, To, Tb, Tar

Output: Foreground set F
1: Fo ← ObjDet(I,M, Tc) # Detect foreground objects
2: Fa = {} # To get appearance based foreground set
3: for fo ∈ Fo do
4: if Area(fo) > Ta and Overlap(fo,Fo) < To then
5: Fa = Fa ∪ {fo}
6: end if
7: end for
8: OFb ← OFBin(OF, Tb) # Optical flow binarization
9: OFb ← ForeSub(OFb,Fa) # Subtract appearance based foreground

10: C ← ContourDet(OFb) # Contour detection
11: Fm = {} # To get motion based foreground set
12: for c ∈ C do
13: fm = BoundingBox(c) # Get bounding box of contour
14: if Area(fm) > Ta and 1

Tar
< AspectRatio(fm) < Tar then

15: Fm = Fm ∪ {fm}
16: end if
17: end for
18: F = Fa ∪ Fm

Following the localization scheme proposed in [22], we
show the whole procedure of foreground localization in Al-
gorithm 1. Unlike [22] that uses temporal gradients as mo-
tion cues to localize novel or blurred foreground, we use
optical flow (OF) instead, because it is a more accurate mo-

1http://www.svcl.ucsd.edu/projects/anomaly/
dataset.htm

2http://www.cse.cuhk.edu.hk/leojia/projects/
detectabnormal/dataset.html

3https://svip- lab.github.io/dataset/campus_
dataset.html, which is subject to MIT License

tion representation that enjoys better robustness to low-level
noises. Concretely, the foreground localization scheme con-
sists of an appearance based localization stage and a motion
based localization stage, which are detailed below:

For appearance based localization stage, the goal is to
build an appearance based foreground set Fa. To this end,
a pre-trained object detector M first performs object de-
tection on a raw video frame I , so as to obtain a prelimi-
nary foreground object set Fo. Each object fo ∈ Fo en-
joys a confidence score that is greater than Tc in detec-
tion. Then, two simple but efficient heuristic rules are used
to filter out those object regions that are either too small
(Area(fo) ≤ Ta) or significantly overlapped with other ob-
ject regions (Overlap(fo,Fo) ≥ To) from Fo, while the
rest of foreground objects are put into the appearance based
foreground set Fa. Thus, most common objects in daily life
can be localized precisely.

When it comes to the motion based localization stage,
the goal is to establish a motion based foreground set Fm.
Specifically, the frame I’s OF is first binarized by a thresh-
old Tb into a binary map OFb. The highlighted areas in
this binary map is then used to indicate regions with in-
tense motion. Afterwards, foreground objects in Fa are
subtracted from the binary map OFb, which avoids dupli-
cation of localization and facilitates localizing novel fore-
ground objects more precisely. Finally, contour detection is
performed on the binary map OFb to obtain the contour set
C of novel objects and their corresponding bounding boxes.
Similarly, two simple rules are introduced to filter out overly
small foreground objects (Area(fm) ≤ Ta) or objects with
irregular aspect ratio. The remaining foreground objects are
collected to form the motion based foreground set Fm. In
this way, novel or deformed foreground objects that are not
detected by pre-trained object detector can be localized.

The final foreground set F is a union of appearance
based foreground set Fa and motion based foreground set
Fm. The settings of parameters in foreground localization
are specified in next section.
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Figure 1. CAE architecture for reconstruction.

3. More Implementation Details

We provide more implementation details of our experi-
ments in this section. For foreground localization, we use
mmdetection toolbox4 [1] for object detection. Specifi-
cally, we adopt YOLO v3 [14] pre-trained on Microsoft
COCO dataset [9] to localize foreground objects because it
achieves a good trade off between detection performance
and speed (up to 60 fps). Meanwhile, we use the pre-
trained FlowNet v25 [6] to estimate optical flow for each
video frame. As for thresholds, we set the confidence score
threshold Tc = 0.2, overlapping ratio threshold To = 0.6,
optical flow binarization threshold Tb = 1 and aspect ra-
tio threshold Tar = 10 in all experiments. Consider-
ing the resolution and foreground object scale of different
datasets, we set area threshold Ta to 10 × 10 for UCS-
Dped1/UCSDped2, 40 × 40 for avenue and 30 × 30 for
ShanghaiTech. To alleviate the evident foreground depth
variations in UCSDped1, which may lead to significant dif-
ferences in object scales and undermine the performance,
we evenly divide the video frame into 4×1 local regions and
process foreground objects in each region by a separated
DNN. We simply assign each object to the region where it
is centered. Hence, we train four DNNs to score objects
in four regions respectively. As for the DNN architecture
for reconstruction, we adopt a 7-layer fully convolutional
autoencoder (CAE), the architecture of which is shown in
Fig. 1. For SPR scheme, warm-up epoch is typically set
as T ′ = 5, while it is set to 20 for the motion enhanced
LBR-SPR on Avenue dataset, so as to enable a stable per-
formance. Following previous works [10, 16], we also ap-
ply a sliding window with window size 10 to smooth frame
anomaly scores. Our implementation can be accessed at
https://github.com/yuguangnudt/LBR_SPR.

4https://github.com/open-mmlab/mmdetection, which
is subject to Apache License 2.0.

5https://github.com/vt-vl-lab/flownet2.pytorch,
which is subject to Apache License 2.0.
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Figure 2. Pixel-level ROC curves of LBR-SPR∗ with motion en-
hancement (ME) under partial mode.

Table 1. Pixel-level AUROC comparison with UVAD and classic
VAD methods. Note that LBR-SPR∗ indicates the performance of
LBR-SPR under partial mode, while LBR-SPR+ indicates the per-
formance under merge mode. ME denotes motion enhancement.

Setup Method Ped1 Ped2

C
la

ss
ic

VA
D

AMDN [19] 67.2% -
WTA-CAE [15] 68.7% 89.3%
AM-GAN [13] 70.3% -
Recounting [5] - 89.1%

TCP [12] 64.5% -
AnomalyNet [24] 45.2% 52.8%

MLAD [17] 66.6% 97.2%
DeepOC [18] 63.1% 95.0%
SIGNet [3] 51.6% 48.4%

U
VA

D

UM [16] 52.4% -
LBR-SPR∗ (w/o ME) 62.4% 77.5%
LBR-SPR∗ (w/ ME) 64.0% 84.2%

LBR-SPR+ (w/o ME) 62.0% 84.7%
LBR-SPR+ (w/ ME) 63.9% 87.1%

4. Other Evaluation Metrics

In VAD, two types of criterion are usually used for eval-
uation: Frame-level criterion and pixel-level criterion [11].
For frame-level criterion, one abnormal frame is viewed to
be correctly detected if any pixel on this frame is detected
as abnormal; For pixel-level criterion, an abnormal frame is
viewed to be correctly detected only when more than 40%
anomaly pixels on this frame are identified. Thus, frame-
level criterion focuses on frame-level detection, while pixel-
level criterion also emphasizes anomaly localization. Under
either criterion, AUROC and equal error rate (EER) can be
computed as quantitative measure of performance. Recent
VAD works usually report frame-level AUROC only, since
many deep VAD methods are performed on a per-frame ba-
sis. For a comprehensive evaluation on UCSDped1 and
UCSDped2, we report pixel-level AUROC and EER under
both types of criterion as the literature does. Since previous
VAD works usually report frame-level EER only on Avenue
and ShanghaiTech, we simply follow their practice. First,
we visualize some pixel-level and frame-level ROC curves



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

UCSDped1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
UCSDped2

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Avenue

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
ShanghaiTech

Figure 3. Frame-level ROC curves of LBR-SPR∗ with motion enhancement (ME) under partial mode.

Table 2. Results of EER. LBR-SPR∗ indicates the performance of LBR-SPR under partial mode, while LBR-SPR+ indicates the perfor-
mance under merge mode. EERF represents frame-level EER, while EERP represents pixel-level EER. ME denotes motion enhancement.

Setup Method Ped1 Ped2 Avenue SHTech
EERF EERP EERF EERP EERF EERF

C
la

ss
ic

VA
D

CAE [4] 27.9% - 21.7% - 25.1% -
AMDN [19] 16.0% 40.1% 17.0% - - -

AM-GAN [13] 8.0% 35.0% 14.0% - - -
ST-CAE [23] 15.3% - 16.7% - 24.4% -

WTA-CAE [15] 14.8% 35.7% 8.9% 16.9% 24.2% -
R-VAE [20] 32.4% - 15.5% - 27.5% -

AnomalyNet [24] 25.2% - 10.3% - 22.0% -
AnoPCN [21] - - 10.0% - 20.2% 33.7%
DeepOC [18] 23.4% - 8.8% - 18.5% -

VEC [22] - - 7.5% - 17.9% 31.5%

U
VA

D

LBR-SPR∗ (w/o ME) 25.7% 39.1% 14.3% 24.9% 18.5% 36.0%
LBR-SPR∗ (w/ ME) 25.5% 37.7% 12.2% 20.4% 13.2% 33.7%

LBR-SPR+ (w/o ME) 28.8% 40.3% 9.1% 19.2% 18.3% 34.8%
LBR-SPR+ (w/ ME) 25.8% 38.8% 9.7% 18.5% 17.8% 33.4%

yielded by LBR-SPR in Fig. 2 and Fig. 3 respectively
for a intuitive demonstration. Second, we compare pixel-
level AUROC of the proposed LBR-SPR and those exist-
ing VAD methods that have reported pixel-level results in
Table 1: For one thing, LBR-SPR still significantly outper-
forms the UVAD method UM [16], which is the only UVAD
method that reports pixel-level AUROC, by approximately
10% AUROC on UCSDped1 dataset; For another, the pixel-
level performance of the proposed LBR-SPR is also highly
competitive when compared with classic VAD methods. As
to EER, we report the results in Table 2. Since no UVAD
methods has reported EER, we simply compare our UVAD
methods with classic VAD methods that report EER. As can
be seen from the table, results in Table 2 exihibit a very sim-
ilar trend to previous AUROC comparison, which demon-
strates the effectiveness of our LBR-SPR again.

5. Other SP Regularizers for SPR

In addition to the mixture SP regularizer leveraged in this
paper, we also explore the customization of other SP regu-
larizers to implement SPR, i.e., hard SP regularizer [8] and
linear SP regularizer [7]. Specifically, hard and line SP reg-

ularizer have the following forms:

gh(v|λ) = −λ

n∑
i=1

vi

gl(v|λ) = 1

2
λ

n∑
i=1

(v2i − 2vi)

(1)

where gh(v|λ) and gl(v|λ) represent the hard and linear SP
regularizer respectively. Following the same optimization
strategy in the manuscript, when θ is fixed, the correspond-
ing closed-formed solutions to v∗i are given as follows:

vh∗i =

{
0, Li(θ) ≥ λ

1, Li(θ) < λ

vl∗i =


0, Li(θ) ≥ λ

1− Li(θ)

λ
, Li(θ) < λ

(2)

where vh∗i and vl∗i represent the optimal v∗i for hard and lin-
ear SP regularizer respectively. To determine λ and enable a
progressive removal of anomalies, we adopt the same strat-
egy as the mixture SP regularizer, which gradually lowers λ



Table 3. Different SP regularizers for LBR-SPR with ME.

Mode Method Ped1 Ped2 Avenue SHTech

Partial

LBR 79.7% 90.9% 90.4% 71.7%
LBR-SPR (Hard) 80.5% 95.8% 91.1% 72.1%

LBR-SPR (Linear) 81.6% 96.4% 92.5% 71.8%
LBR-SPR (Mixture) 81.1% 95.7% 92.8% 72.1%

Merge

LBR 80.1% 91.8% 89.5% 71.7%
LBR-SPR (Hard) 81.2% 97.3% 89.8% 72.6%

LBR-SPR (Linear) 81.3% 97.4% 90.6% 72.5%
LBR-SPR (Mixture) 80.9% 97.2% 90.7% 72.6%

from µ(t) + 4σ(t) to µ(t) + σ(t) as the number of training
iteration t increases:

λ = max{µ(t) + (4− t · r) · σ(t), µ(t) + σ(t)} (3)

Likewise, we can also illustrate how hard/linear SP reg-
ularizer exclude anomalies by Eq. (2): When the RL of a
STC Li(θ) is larger than the threshold λ, the STC’s weight
vi will be directly set as 0 and it will be dropped at the cur-
rent training iteration for both hard and linear regularizer,
which is similar to the mechanism of mixture SP regular-
izer. However, when the RL of a STC is smaller than the
threshold λ, hard SP regularizer will directly set its sample
weight to be 1, which is an optimistic strategy. On the con-
trary, linear SP regularizer adopts a pessimistic strategy that
simply lowers the weights of all remaining samples accord-
ing to their RL, while only few samples with very small
RL are assigned with a weight close to 1. As a compari-
son, mixture SP regularizer used in the manuscript adopts
an intermediate strategy that determines sample weights by
dividing samples into certain normality/anomalies and un-
certain samples. In Table 3, we evaluate the performance of
hard/linear SP regularizer and compare them with original
LBR and mixture SP regularizer: It is observed that all three
regularizers are able to produce evident performance im-
provement when compared with LBR. Among three SP reg-
ularizers, we note that mixture SP regularizer tends to be the
better performer on Avenue and ShanghaiTech, while linear
and hard SP regularizer is generally better on UCSDped1
and UCSDped2 dataset. In our paper, we simply choose
mixture SP regularizer as a relatively moderate strategy to
exclude anomalies, while the results in Table 3 suggest that
other forms of SP regularizer are also readily applicable.

6. Full mode for UVAD Evaluation
In addition to the two UVAD setups (i.e., partial mode

and merge mode ) reported in the manuscript, it is also in-
teresting to explore another natural setup named full mode:
The original training and testing set of the original VAD
dataset are merged into one unlabeled set, which is used for
both training and evaluation. In other words, partial mode
and merge mode perform evaluation on the original testing

Table 4. Frame-level AUROC of LBR-SPR under different modes.
LBR-SPR∗ indicates the performance of LBR-SPR under partial
mode, and LBR-SPR+ indicates the performance under merge
mode, while LBR-SPR# indicates the performance under full
mode. ME denotes motion enhancement.

Method Ped1 Ped2 Avenue
LBR-SPR∗ (w/o ME) 81.1% 93.3% 88.5%
LBR-SPR∗ (w/ ME) 81.1% 95.7% 92.8%

LBR-SPR+ (w/o ME) 79.4% 97.0% 89.7%
LBR-SPR+ (w/ ME) 80.9% 97.2% 90.7%

LBR-SPR# (w/o ME) 82.3% 97.9% 92.7%
LBR-SPR# (w/ ME) 83.8% 98.4% 93.8%

set, while the full mode performs evaluation on the merged
unlabeled set. As the partial and merge mode do, all labels
are strictly not used in learning. We show the VAD per-
formance of our solution under the full mode in Table 4,
and compare the UVAD performance under the partial and
merge mode. As the results suggest in the table, evalua-
tions under a full mode constantly report a more optimistic
performance than the partial and merge mode. To facilitate
comparison with existing methods, we only report results of
the partial and merge mode in the manuscript.

7. More Discussion
Computational Cost. By a python implementation on a

PC with Intel i9-10900X CPU and NVIDIA 2080Ti GPUs,
LBR-SPR takes an average 0.033/0.041/0.067/0.11s per
frame to extract STCs and infer anomaly scores on UCS-
Dped1/UCSDped2/Avenue/ShanghaiTech respectively. It
should be noted that our UVAD solution is an offline trans-
ductive approach, so the computational cost is only shown
as a reference.

Limitation. The proposed solution is merely tested as a
transductive approach so far, which detects anomalies from
all given unlabeled videos. It is unclear if it can work as an
inductive solution that deals with newly incoming videos.
Then, formation of normality advantage requires that nor-
mal events outnumber anomalies in videos, which usually
but not always holds. Besides, non-generative paradigms
like contrastive learning [2] are not studied in this paper.
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