
Supplementary Material

1. Additional Visual Comparison
In the main paper, we show that our method can gener-

ate superior super-resolution results for parkour videos cap-
tured by egocentric sports cameras. In addition to the park-
our videos, we collect real-world video clips (See Fig. 3)
from commonly seen categories: animation, movie, music
video (MV) and vlog. The goal of this experiment is to test
the robustness and generalization of our method in var-
ious scenarios. Note that the appearances of these videos
are significantly different from the videos in our training set
(Vimeo90K [7]). In this supplementary material, the results
show that our method generalizes better than comparison
methods EDVR [6], TOFlow [7] and TGA [1] which are
also trained on Vimeo90K [7]. We now discuss the exam-
ples shown in Fig. 3.

1) Animation. Animation is challenging to frame align-
ment for its lack of textures and low frame rate. We show
a 2D animation example (a) and 3D animation examples
(b) and (c) in Fig. 3. In example (a), it is difficult to re-
cover the facial details by simply fusing neighbor frames
since the information is completely corrupted in the low-
resolution frames (see bicubic and comparison results). Our
method can recover the facial details thanks to the memory-
augmented attention. In example (b), aligning the strings on
a moving guitar is difficult for EDVR [6], TOFlow [7], DB-
VSR [3] and TGA [1]. Our cross-frame non-local attention
can effectively avoid the artifacts caused by the misaligned
frames. This mechanism also works better for still repetitive
pattern regions like example (c), which are often recognized
as moving patterns and shifted (EDVR, TOFlow, DBVSR
and TGA). Image super-resolution method CSNLN [2] also
fails due to the erroneous non-local attention.

2) Movie. Super-resolving movies are of interest in on-
line video streaming services. Movies are also challenging
for their large motion and low illumination. Our method can
generate very small scale sharp details like the star on the
shield (examples (d)), wrinkles on the face (example (e))
and eagle eye/feathers (example (f)), which are difficult to
reconstruct using either frame alignment (EDVR, TOFlow,
DBVSR and TGA) and regular non-local attention (PFNL
and CSNLN).

3) MV. Music video (MV) is one of the most-watched
video categories online. Music video usually focuses on
close-up shots of dancing humans, making the reconstruc-
tion of details on clothes important. In examples (g) and (h),
our cross-frame non-local attention module enables recov-

ering the fine details under the presence of motion blur. The
comparison non-local attention based methods PFNL [8]
and CSNLN [2] cannot achieve results comparable to ours
since in the regular non-local attention, equally treating the
pixels in the entire video frame has a negative effect on the
overall performance.

4) Vlog. Vlog is another type of daily video captured
by hand-held devices. This category also covers video chat,
which is also common in daily life. Due to the instability
of hand-held devices, these videos are extremely shaky and
difficult to super-resolve. Existing video super-resolution
methods TOFlow [7], TGA [1] and PFNL [8] fail in exam-
ple (j) and (k). EDVR [6] can recover some details in ex-
amples (i), (j) and (k), but their results are blurry in general
due to the inaccurate frame alignment.

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bicubic 31.60 0.9126 0.2135 DBVSR 34.41 0.9472 0.0993
MANA 37.44 0.9626 0.0681 TGA 37.12 0.9601 0.0707
EDVR 34.48 0.9456 0.1150 PFNL 37.04 0.9673 0.0819
TOFlow 35.58 0.9531 0.0968 CSNLN 36.09 0.9545 0.0844

Table 1. Quantitative comparison on the videos shown in Fig. 3.
Larger numbers indicate better results for PSNR and SSIM,
smaller numbers indicate better results for LPIPS.

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bicubic 22.34 0.6131 0.5186 DBVSR 24.64 0.7547 0.3096
MANA 25.22 0.7816 0.2842 TGA 25.36 0.7949 0.2834
EDVR 25.79 0.8063 0.2489 PFNL 25.01 0.7788 0.3204
TOFlow 24.41 0.7435 0.3340 CSNLN 24.09 0.7202 0.3425

Table 2. Quantitative comparison on Vid4 [4], which consists of
only 4 test videos. Larger numbers indicate better results for PSNR
and SSIM, smaller numbers indicate better results for LPIPS.

2. Additional Quantitative Comparison
We show the average quantitative values for example

videos in Fig. 3 in Table 1. We also provide quantitative
result on Vid4 [4] dataset, consisting of 4 videos only, in
Table 2. Although this small dataset is less diverse and
representative, our method still achieves comparable re-
sults. More comprehensive comparisons in Table 1 and the
main paper have shown that our method works consistently
better than the existing state-of-the-art methods in various
categories of real-world videos outside the domain of the
Vimeo90K training set. This proves the robustness of our
method, which is important for real applications.
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Figure 1. Visualization of correlation map between the center pixel
and the frame 3 time steps away.

Figure 2. Visual effect of the memory bank.
Structure PSNR↑ SSIM↑ LPIPS↓
Baseline (Encoder+Decoder) 32.42 0.9209 0.1393
+Conventional NLA 33.31 0.9338 0.1231
+Gaussian NLA 33.57 0.9367 0.1208
+Memory Module (Complete Model) 33.81 0.9397 0.1159
Baseline+Optical Flow 32.49 0.9230 0.1398

Table 3. Additional ablation experiment.

3. Additional Ablation Study
A complete ablation experiment demonstrating the effec-

tiveness of each network module is shown in Table 3. Start-
ing from only encoder and decoder (referred to as baseline),
we gradually add conventional non-local attention (NLA),
Gaussian weighted NLA and memory module and evaluate
the performance on the large motion Parkour dataset. To
show the necessity of NLA in the large motion video super-
resolution, we also include a version by replacing the NLA
with optical flow and evaluate its performance.
Effectiveness of Gaussian Non-Local Attention To make
our Gaussian weighted Non-Local Attention approach more
intuitive, we visualize the effects of Gaussian in Fig. 1. The
red dots are the pixels having a correlation value greater
than 10% of the maximum value to the center query pixel.
Without Gaussian (Fig. 1(b)), the large motions may cause
bad correspondences in conventional NLA that distributed
across the entire frame. The distant correspondence is less
reliable in general, so our model learns a single Gaussian
centered at the query pixel to re-scale the correlation map.
Note that the re-scaling won’t completely zero out all dis-
tant matches. The intuition of Gaussian weighting is that
it can filter out the erroneous correspondences with small
correlations, but keep those truly helping the reconstruction
of the query pixel. For small motion (Fig. 1(d)), Gaussian
weighting has an insignificant effect on correlation. The
standard deviation of the Gaussian (σ = 12.1804) is learned
as a parameter so that the overall performance is optimized.

We also show additional ablation studies on with and
without Gaussian in Table 3. The performance of Gaussian

NLA has a 0.26dB PSNR gain compared to conventional
NLA in large motion Parkour videos. This is because the
learned Gaussian re-scales the correlation according to the
distance to the query pixel, and effectively filters out the
erroneous correspondences. This argument is further sup-
ported by the last row of Table 3, where we replace the
NLA with optical flow (RAFT [5]). In the large motion
videos, due to the difficulty of finding accurate correspon-
dence among neighbor frames, its performance is inferior to
both the conventional NLA and Gaussian NLA, which con-
tribute 0.89dB and 0.26dB to the PSNR gain respectively.
Effectiveness of Memory Module Qualitative result on our
model with and without memory module is shown in Fig.
2. Memory module improves the overall sharpness of local
details in the results, e.g. the cable in the first example and
the grid in the second example. Also note that the memory
module contributes 0.24dB more PSNR gain compared to
solely using Gaussian NLA, as shown in Table 3.

References
[1] Takashi Isobe, Songjiang Li, Xu Jia, Shanxin Yuan, Gregory

Slabaugh, Chunjing Xu, Ya-Li Li, Shengjin Wang, and Qi
Tian. Video super-resolution with temporal group attention.
In CVPR, 2020. 1

[2] Yiqun Mei, Yuchen Fan, Yuqian Zhou, Lichao Huang,
Thomas S. Huang, and Humphrey Shi. Image super-resolution
with cross-scale non-local attention and exhaustive self-
exemplars mining. In CVPR, 2020. 1

[3] Jinshan Pan, Haoran Bai, Jiangxin Dong, Jiawei Zhang, and
Jinhui Tang. Deep blind video super-resolution. In ICCV,
2021. 1

[4] Mehdi Sajjadi, Raviteja Vemulapalli, and Matthew Brown.
Frame-recurrent video super-resolution. In CVPR, 2018. 1

[5] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 2

[6] Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, and
Chen Change Loy. EDVR: Video restoration with enhanced
deformable convolutional networks. In CVPR, 2019. 1

[7] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV),
127(8):1106–1125, 2019. 1

[8] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi
Ma. Progressive fusion video super-resolution network via
exploiting non-local spatio-temporal correlations. In ICCV,
2019. 1



Figure 3. Additional visual comparison on examples from daily videos including animations (examples (a), (b) and (c)), movies (examples
(d), (e) and (f)), MVs (examples (g) and (h)), and vlogs (examples (i), (j) and (k)). Our method works consistently better in common types
of real-world video, indicating the robustness of our method.
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