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A. Detailed hyper-parameters on ImageNet-1K

PoolFormer. On ImageNet-1K classification benchmark, we utilize the hyper-parameters shown in Table 1 to train models
in our paper. Based on the relation between batch size and learning rate in Table 1, we set the batch size as 4096 and learning
rate as 4 × 10−3. For stochastic depth, following the original paper [3], we linearly increase the probability of dropping a
layer from 0.0 for the bottom block to dr for the top block.

Hybrid Models. We use the hyper-parameters for all models except for the hybrid models with token mixers of pooling
and attention. For these hybrid models, we find that they achieve much better performances by setting batch size as 1024,
learning rate as 10−3, and normalization as Layer Normalization [1].

B. Training for longer epochs
In our paper, PoolFormer models are trained for the default 300 epochs on ImageNet-1K. For DeiT [6]/ResMLP [5], it is

observed that the performance saturates after 400/800 epochs. Thus, we also conduct the experiments of training longer for
PoolFormer-S12 and the results are shown in Table 2. We observe that PoolFormer-S12 obtains saturated performance after
around 2000 epochs with a top-1 accuracy improvement of 1.8%. However, for fair comparison with other ViT/MLP-like
models, we still train PoolFormers for 300 epochs by default.

C. Qualitative results
We use Grad-CAM [4] to visualize the results of different models trained on ImageNet-1K. We find that although ResMLP

[5] also activates some irrelevant parts, all models can locate the semantic objects. The activation parts of DeiT [6] and
ResMLP [5] in the maps are more scattered, while those of RSB-ResNet [2, 7] and PoolFormer are more gathered.

D. Comparison between Layer Normalization and Modified Layer Normalization
We modify Layer Normalization [1] into Modified Layer Normalization (MNN). It computes the mean and variance

along spatial and channel dimensions, compared with only channel dimension in vanilla Layer Normalization. The shape of
learnable affine parameters of MLN keeps the same as that of Layer Normalization, i.e., RC. MLN can be implemented with
GroupNorm API in PyTorch by setting the group number as 1. The comparison details are shown in Algorithm 1.

E. Code in PyTorch
We provide the PyTorch-like code in Algorithm 2 associated with the modules used in the PoolFormer block. Algorithm 3

further shows the PoolFormer block built with these modules.
*Work done during an internship at Sea AI Lab.
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PoolFormer
S12 S24 S36 M36 M48

Peak drop rate of stoch. depth dr 0.1 0.1 0.2 0.3 0.4
LayerScale initialization ε 10−5 10−5 10−6 10−6 10−6

Data augmentation AutoAugment
Repeated Augmentation off
Input resolution 224
Epochs 300
Warmup epochs 5
Hidden dropout 0
GeLU dropout 0
Classification dropout 0
Random erasing prob 0.25
EMA decay 0
Cutmix α 1.0
Mixup α 0.8
Cutmix-Mixup switch prob 0.5
Label smoothing 0.1
Relation between peak learning

rate and batch size lr = batch size
1024 × 10−3

Batch size used in the paper 4096
Peak learning rate used in the paper 4× 10−4

Learning rate decay cosine
Optimizer AdamW
Adam ε 1e-8
Adam (β1, β2) (0.9, 0.999)
Weight decay 0.05
Gradient clipping None

Table 1. Hyper-parameters for image classification on ImageNet-1K

# Epochs 300 (default) 400 500 1000 1500 2000 2500 3000

PoolFormer-S12 77.2 77.5 77.9 78.4 78.6 78.8 78.8 78.8

Table 2. Performance of PoolFormer trained for different numbers of epochs.
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Figure 1. Grad-CAM [4] activation maps of the models trained on ImageNet-1K. The visualized images are from validation set.



Algorithm 1 Comparison between Layer Normalization and Modified Layer Normalization, PyTorch-like Code

import torch.nn as nn

class LayerNormChannel(nn.Module):
"""
Vanilla Layer Normalization normalizes vectors along channel dimension.
Input: tensor in shape [B, C, H, W].
"""
def __init__(self, num_channels, eps=1e-05):

super().__init__()
# The shape of learnable affine parameters is [num_channels, ].
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps

def forward(self, x):
u = x.mean(1, keepdim=True) # Compute the means along channel dimension.
s = (x - u).pow(2).mean(1, keepdim=True) # Compute the variances along channel dimension.
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \

+ self.bias.unsqueeze(-1).unsqueeze(-1)
return x

class ModifiedLayerNorm(nn.Module):
"""
Modified Layer Normalization normalizes vectors along channel dimension and spatial dimensions.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, eps=1e-05):

super().__init__()
# The shape of learnable affine parameters is also [num_channels, ], keeping the same as vanilla Layer

Normalization.
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps

def forward(self, x):
u = x.mean([1, 2, 3], keepdim=True) # Compute the mean along channel dimension and spatial dimensions.
s = (x - u).pow(2).mean([1, 2, 3], keepdim=True) # Compute the variance along channel dimension and

spatial dimensions.
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \

+ self.bias.unsqueeze(-1).unsqueeze(-1)
return x

# Modified Layer Normalization can also be implemented using GroupNorm API in PyTorch by setting the group
number as 1.

class ModifiedLayerNorm(nn.GroupNorm):
"""
Modified Layer Normalization implemented by Group Normalization with 1 group.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, **kwargs):

super().__init__(1, num_channels, **kwargs)



Algorithm 2 Modules for PoolFormer block, PyTorch-like Code

import torch.nn as nn

class ModifiedLayerNorm(nn.GroupNorm):
"""
Modified Layer Normalization implemented by Group Normalization with 1 group.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, **kwargs):

super().__init__(1, num_channels, **kwargs)

class Pooling(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
Input: tensor with shape [B, C, H, W]
"""
def __init__(self, pool_size=3):

super().__init__()
self.pool = nn.AvgPool2d(

pool_size, stride=1, padding=pool_size//2, count_include_pad=False)

def forward(self, x):
# Subtraction of the input itself is added
# since the block already has a residual connection.
return self.pool(x) - x

class Mlp(nn.Module):
"""
Implementation of MLP with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
"""
def __init__(self, in_features, hidden_features=None,

out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)

def _init_weights(self, m):
if isinstance(m, nn.Conv2d):

trunc_normal_(m.weight, std=.02)
if m.bias is not None:

nn.init.constant_(m.bias, 0)

def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x



Algorithm 3 PoolFormer block, PyTorch-like Code

import torch.nn as nn

class PoolFormerBlock(nn.Module):
"""
Implementation of one PoolFormer block.
--dim: embedding dim
--pool_size: pooling size
--mlp_ratio: mlp expansion ratio
--act_layer: activation
--norm_layer: normalization
--drop: dropout rate
--drop path: Stochastic Depth,

refer to https://arxiv.org/abs/1603.09382
--use_layer_scale, --layer_scale_init_value: LayerScale,

refer to https://arxiv.org/abs/2103.17239
"""
def __init__(self, dim, pool_size=3, mlp_ratio=4.,

act_layer=nn.GELU, norm_layer=ModifiedLayerNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):

super().__init__()

self.norm1 = norm_layer(dim)
self.token_mixer = Pooling(pool_size=pool_size)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,

act_layer=act_layer, drop=drop)

# The following two techniques are useful to train deep PoolFormers.
self.drop_path = DropPath(drop_path) if drop_path > 0. \

else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:

self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones(dim), requires_grad=True)

self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones(dim), requires_grad=True)

def forward(self, x):
if self.use_layer_scale:

x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x)))

x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x)))

else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))

return x


