
Paramixer: Parameterizing Mixing Links in Sparse Factors Works Better than
Dot-Product Self-Attention (Supplemental Document)

Tong Yu * Ruslan Khalitov ∗ Lei Cheng Zhirong Yang †

Norwegian University of Science and Technology

1. Synthetic Data Experiments
For both problems in the scalability test, we generated

sequences using the setup described in the main paper. We
ran the experiments on sequences with variable lengths:
from 128 to 32k. The longer sequences, the more com-
plex the retrieval process. There is a slight difference in
the pre-processing part. For the Adding problem, the in-
put data was only two-dimensional. To avoid using such a
low-dimensional embedding space, we augmented the di-
mensionality with an additional linear layer to assure suf-
ficient freedom for dot-product attention architectures. The
training configuration and hyperparameters are the same for
both the Adding problem and the Temporal Order problem.
Their summary is in Table 1

2. Long Range Arena
The data set for the LRA benchmark is publicly avail-

able. The information about data and the download link
can be found in the official GitHub repository: https://
github.com/google-research/long-range-
arena.

• ListOps The raw data for this problem is orga-
nized as three separate files basic train.tsv,
basic test.tsv, basic val.tsv for training,
testing, and validation data, respectively. The split is
fixed. In addition to the tokens described in the main
paper, each sequence has ”(” and ”)” symbols, which
should be removed. To equalize the lengths of the se-
quences, we used the built-in PyTorch padding func-
tional. After the sequences are prepared, the embed-
ding layer processes each unique value, thus mapping
elements to the embedding space. The rest of the train-
ing process is straightforward.

• Text Classification We downloaded IMDB data set us-
ing the tensorflow-dataset package, and got
25000 instances for training and another 25000 for

*Equal contribution.
†Corresponding author. zhirong.yang@ntnu.no

testing. We went through the whole corpus and ex-
tracted the character vocabulary. Then we mapped
each sequence to a vector of indices using this vocab-
ulary. Finally, we truncated or padded each sequence
to a fixed length of 4096. For every review, we add
[”CLS”] token to each sequence and use the embed-
ding of [”CLS”] token for final classification. We used
three blocks Paramixer for this task.

• Image Classification CIFAR10 is a well-known
dataset, which can be downloaded from the
torchvision package. The train/test splitting
is fixed. To make images grayscaled, we used standard
transformation transforms|grayscale from
the same package. An image is flattened to a sequence
of length 1024. Then each element is mapped to a
dictionary of size 256 (all possible intensity values)
and given to the embedding layer.

• Pathfinder The problem data consists of two types
of files: images and metafiles. Metafiles store
information about all the images and their cor-
responding labels (positive or negative). There
are three classes of images: curv baseline
(easy), curv contour length 9 (medium),
curv contour length 14 (hard). An image
class corresponds to the distance between its end-
points (curve length), thus positively correlates with
the difficulty level. The exact data split is not pro-
vided. To separate the data into three parts, we iterated
over all metafiles from the catalogs and constructed
the training/val/test (90%/5%/5%) sets such that all
three types of images are present equally. The rest of
the processing is similar to the Image Classification
task.

3. Long Document Classification
The task is a four-class classification problem. The class

of a paper is defined by its arxiv categorization, namely,
cs.AI, cs.NE, math.AC, and math.GR. Each class in the data
set is almost equally presented, with a slight class imbal-
ance: 2995, 3012, 2885, and 3065 documents, respectively.

1



Table 1. Hyperparameters details for every task. N , B, V , E, H , lr refer to max sequence length, batch size, vocabulary size, embedding
size, hidden states size, and learning rate, respectively. The vocabulary size includes padding index and [”CLS”].

Task N Protocol n links lr B V E H pos embed Pooling Type
Adding 32768 CHORD 15 0.001 40 - 32 32 True FLAT
Temporal Order 16384 CHORD 14 0.001 40 6 32 32 True FLAT
ListOps 2000 CHORD 12 0.001 48 16 32 32 True FLAT
CIFAR10 1024 CDIL 3 0.001 64 256 32 32 True FLAT
Text 4096 CDIL 9 0.0001 32 97 32 128 False CLS
Pathfinder 1024 CHORD 11 0.001 64 256 32 32 True FLAT
Long Document 16384 CHORD 15 0.0001 16 4290 100 128 False CLS
Long Document 32768 CHORD 16 0.0001 16 4290 100 128 False CLS
Genome Classification 16384 CHORD 15 0.0001 16 5 32 128 True FLAT

To transform the raw articles into sequences, we first went
through the whole corpus and extracted the character vocab-
ulary. Then we mapped each character sequence to a vector
of indices using this vocabulary. We fine-tuned Paramixer
and X-formers to get the best results. The hyperparameters
of Paramixer were selected using a similar process. Final
configurations are shown in Table 1. For every document,
we add [”CLS”] token to each sequence and use the result
embedding of [”CLS”] token for the final classification.

4. Genome Classification
When building MTcDNA we downloaded cDNA se-

quences of Chelonoidis abingdonii and Gopherus agassizii,
and merged them as a turtle data set. Following the same
strategy, we built the mouse data set using Mus musculus
and Mus spretus. More details can be found in the main
paper. For the HFDNA classification task, one Paramixer
block is enough to get 100% accuracy. However, Paramix-
erNn with two blocks result in the best test accuracy for
MTcDNA. The selected hyperparameters are listed in Table
1.

5. Proof of Proposition 3.1 in the main paper
Definition 1. An N ×N circulant matrix C takes the form

C =



c0 cN−1 · · · c2 c1
c1 c0 cN−1 · · · c2
... c1 c0

. . .
...

cN−2 · · ·
. . .

. . . cN−1

cN−1 cN−2
. . . c1 c0


Definition 2. The polynomial

f(x) = c0 + c1x+ · · ·+ cN−1x
N−1

is called the associated polynomial of circulant matrix C.

We have the following theorem in the literature [1]:

Theorem 1. The rank of a circulant matrix C is equal
to N − d, where d is the degree of the polynomial
GCD(f(x), xN−1).

Now we can prove Preposition 3.1 for the CHORD pro-
tocol. The proof for CDIL follows similarly.

Proof. The associated polynomial of W (m) is

f(x) =

log2 N−1∑
k=0

xk

Because GCD(f(x), xN − 1) = 1 = x0, the rank of W (m)

is N .

References
[1] A. W. Ingleton. The rank of circulant matrices. Jour-

nal of the London Mathematical Society, s1-31(4):445–
460, 1956. 2


