
Supplementary Material for

Rotationally Equivariant 3D Object Detection

Hong-Xing Yu

Stanford University

Jiajun Wu

Stanford University

Li Yi

Tsinghua University, Shanghai Qi Zhi Institute

Abstract

In this supplementary document, we provide further anal-

ysis in Section 1, including analysis on using category-level

pose estimation, the number of discretized orientation bins,

ablation study on rotation equivariance suspension, analysis

on object rotation augmentations, and comparisons of infer-

ence time and the number of parameters. We also include

additional implementation details of the backbone architec-

ture of VoteNet in Section 2. Our code can be found in our

supplementary material.

1. Additional Experimental Analysis

In this section we provide additional experiments analysis

for EON.

Comparison to using category-level pose estimation. A

naive method to directly achieve object-level equivariance in

3D detection might be to use category-level pose estimation

to refine the bounding box orientations. To do this, we

attach a head to VoteNet to predict a NOCS [7] coordinate

for each box proposal, and use the estimated pose to refine

box orientation. Table 1 shows that category-level pose

estimation can only marginally improve the baseline VoteNet.

This is because our equivariant design is not only to refine

orientations. More importantly, it learns better geometric

object features and distinguishes objects from backgrounds

to improve proposal generations.

Effects of finer orientation discretization. In our EON we

predict the object-level orientations by discretizing the yaw

orientation group into N bins and perform a 4-way classifi-

cation for each seed feature orbit. To explore the effect of

different numbers of bins, we study the mAP performance

versus different values of N on ScanNetV2 and show the

results in Figure 1. We can see that the performance boost

of EON-VoteNet over the baseline VoteNet reaches the peak

at N = 4, and saturates with finer discretization. Thus, we

empirically set N = 4 to obtain full performance gain with

minimal additional computation.

Method mAP@0.25 mAP@0.5

VoteNet 50.4 28.3

VoteNet+NOCS [7] 50.7 28.5

EON-VoteNet (ours) 56.7 36.5

Table 1. Comparison to category-level pose estimation method on

ScanNetV2 dataset with Scan2CAD detection labels.

1 2 4 8 12 16 20
50

51

52

53

54

55

56

57

Figure 1. Performances versus different numbers of orientation

bins. Results are evaluated on ScanNetV2 with Scan2CAD labels,

measured by mAP@0.25. Note that EON-VoteNet is equivalent to

VoteNet when N = 1.

Ablating rotation equivariance suspension. A core com-

ponent in our model design is the rotation equivariance sus-

pension on the region aggregation module for object-level

rotation equivariance. Thus, we explore the importance of

rotation equivariance suspension by replacing it with an in-

variant max-pooling which is typically adopted for extracting

invariant features from equivariant features [1,2]. We refer to

this baseline model as Invariant Object detection Networks,

or ION. ION extracts the same feature orbits as EON in

the seed feature extraction module. Instead of suspending

the rotation equivariance, ION directly extracts invariant

features from the feature orbits. We show a comparison of

EON-VoteNet and ION-VoteNet in Table 2.



w/o ObjAug w/ ObjAug

Figure 2. An example of using object rotation data augmentation.

Method Trash-bin Display Others Bathtub Chair Cabinet Bookshelf Table Sofa Bed mAP

ION-VoteNet 34.0 23.8 20.0 43.9 71.7 47.1 51.4 70.3 69.9 83.5 51.5

EON-VoteNet (ours) 45.3 35.8 16.4 49.1 86.3 51.9 51.0 75.0 68.7 87.2 56.7

Table 2. Ablation study on rotation equivariance suspension. We compare EON-VoteNet to ION-VoteNet on ScanNet V2 validation set

using Scan2CAD detection labels. Performances are measure by AP25.

Method VoteNet EON-VoteNet

Trained w/ ObjAug 49.7 53.6

Trained w/o ObjAug 50.4 56.7

Table 3. Evaluation for object rotation data augmentation (Ob-

jAug). Tested on ScanNetV2 with Scan2CAD labels, measured by

mAP@0.25.

Method Inference time (ms) #Parameters

VoteNet 85.3 0.96M

EON-VoteNet 92.8 1.10M

Table 4. Comparison on inference time (using a single input point

cloud with 40K points as input) tested on a single TitanRTX, and

numbers of parameters.

From Table 2 we see that EON-VoteNet outperforms ION-

VoteNet significantly, despite that the latter uses the same

equivariant computation for seed features. This comparison

suggests the importance of maintaining object-level equiv-

ariance throughout the detector.

Effect of object rotation data augmentation. A natural

alternative idea to approach object rotation equivariance is

to use object rotation data augmentation. That is, for each

oriented box in a training scene, we randomly rotate the

points inside the box w.r.t. its box central gravity axis by

[−30, 30] degrees. We also correspondingly rotate the box

orientation label and vote labels inside the box. We denote

this augmentation strategy as “ObjAug”. We show results of

VoteNet and EON-VoteNet when using ObjAug in Table 3.

From Table 3 we can observe that ObjAug hurts both

methods’ performances. A possible reason is that the bound-

ing boxes cannot perfectly enclose an object, so that they

either include background segments or leave some object

surface points unchanged (for example, some surface points

of the desk is not rotated in Figure 2). This leads to cor-

ruptions to the point cloud data. Another possible reason

is that ObjAug changes the scene layouts to an unnatural

configuration (for example, all bookshelves have different

orientations as shown in Figure 2), so that they deviate from

common room layouts present in the test scenes.

Inference time and numbers of parameters. Finally, we

report the inference time and the numbers of parameters in

Table 4 for VoteNet and EON-VoteNet. All models are tested

on a single Nvidia TitanRTX with batch size 1. We can see

that our EON does not add significant cost in inference time

and model capacity.

2. Additional Implementation Details

In our experiments, we apply our EON to VoteNet [3]

and PointRCNN [5]. While both VoteNet and PointRCNN

originally use PointNet++ [4] as their backbones, we replace

it with KPConv [6] for VoteNet to test our EON design on

different backbones. We show the detailed architecture of

the KPConv-based backbone in Table 5 for VoteNet and

Table 6 for EON-VoteNet.



Layer name Output shape Radius (meter) Kernel dimension Note

SA1 2048×32 0.2 15×4×32

SA2 1024×32 0.4 15×32×32

SA3 512×64 0.8 15×32×64 Skip to FP4

SA4 256×64 1.2 15×64×64 Skip to FP3

SA5 128×64 1.5 15×64×64 Skip to FP2

SA6 64×128 1.8 15×64×128

FP1 128×64 1.5 15×192×64

FP2 256×64 1.2 15×128×64

FP3 512×64 0.8 15×128×64

FP4 1024×64 0.4 15×96×64

Table 5. Architecture of KPConv-based [6] backbone used for VoteNet [3]. Following PointNet++ [4] layer definition, “SA” in the layer name

stands for set abstraction, and “FP” stands for feature propagation. As in PointNet++ [4], SA layers use farthest point sampling for abstraction

downsampling, FP layers use 3-NN for upsampling, and every layer uses ball queries for local grouping. The format for output shape is

#points× output dimension. The format for kernel dimension is #kernels× input dimension× output dimension.

Each layer is followed by a batchnorm and a ReLU activation.

Layer name Output shape Radius (meter) Kernel dimension Note

SA1 2048×32×4 0.2 15×4×32

SA2 1024×32×4 0.4 15×32×32

SA3 512×64×4 0.8 15×32×64 Skip to FP4

SA4 256×64×4 1.2 15×64×64 Skip to FP3

SA5 128×64×4 1.5 15×64×64 Skip to FP2

SA6 64×128×4 1.8 15×64×128

FP1 128×64×4 1.5 15×192×64

FP2 256×64×4 1.2 15×128×64

FP3 512×64×4 0.8 15×128×64

FP4 1024×64×4 0.4 15×96×64

Table 6. Architecture of KPConv-based [6] equivariant backbone used for EON-VoteNet. Following PointNet++ [4] layer definition, “SA”

in the layer name stands for set abstraction, and “FP” stands for feature propagation. As in PointNet++ [4], SA layers use farthest point

sampling for abstraction downsampling, FP layers use 3-NN for upsampling, and every layer uses ball queries for local grouping. The

format for output shape is #points× output dimension× #orientation. The format for kernel dimension is #kernels×

input dimension× output dimension. Each layer is followed by a batchnorm and a ReLU activation, and a 1D convolution with

kernel size 3 on the orientation dimension for orientation channel communication [1].

References

[1] Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall

Hill. Equivariant point network for 3d point cloud analysis. In

CVPR, 2021. 1, 3

[2] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,

Andrea Tagliasacchi, and Leonidas Guibas. Vector neurons:

A general framework for so(3)-equivariant networks. ICCV,

2021. 1

[3] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.

Deep hough voting for 3d object detection in point clouds. In

ICCV, 2019. 2, 3

[4] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. arXiv:1706.02413, 2017. 2, 3

[5] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn:

3d object proposal generation and detection from point cloud.

In CVPR, 2019. 2

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J Guibas.

Kpconv: Flexible and deformable convolution for point clouds.



In CVPR, 2019. 2, 3

[7] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,

Shuran Song, and Leonidas J Guibas. Normalized object

coordinate space for category-level 6d object pose and size

estimation. In CVPR, 2019. 1


	. Additional Experimental Analysis
	. Additional Implementation Details

