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S1. Deferred proofs
S1.1. Proof of Theorem 1

We provide here the proof of Theorem 1 which gives an explicit expression to the expressive power of INRs. However,
before we delve deeper in this proof we will prove a few useful lemmas.

S1.1.1 Preliminary lemmas

Lemma 1. Let {ω(1)
k ∈ RD}k∈K and {ω(2)

j ∈ RD}j∈J , and {ϕ(1)
k ∈ R}k∈K and {ϕ(2)

j ∈ R}j∈J be two collections of

frequency vectors and scalar phases, respectively, indexed by the sets K,J ⊆ N. Furthermore, let {β(1)
k ∈ R}k∈K and

{β(2)
j ∈ R}j∈J be two sets of scalar coefficients and r ∈ RD. Then,(∑

k∈K

β
(1)
k cos

(〈
ω

(1)
k , r

〉
+ ϕ

(1)
k

))∑
j∈J

β
(2)
j cos

(〈
ω

(2)
j , r

〉
+ ϕ

(2)
j

) =
∑
ω′∈D

β̃ω′ cos(⟨ω′, r⟩+ ϕ̃ω′) (1)

where

D
({

ω
(1)
k

}
k∈K

,
{
ω

(2)
j

}
j∈J

)
=

{
ω′ = ω

(1)
k ± ω

(2)
j

∣∣∣∣∣k ∈ K, j ∈ J

}
(2)

for some

{
ϕ̃ω′ ∈ R

∣∣∣∣∣ω′ ∈ D

}
,

{
β̃ω′ ∈ R

∣∣∣∣∣ω′ ∈ D

}
.

Proof.(∑
k∈K

β
(1)
k cos

(〈
ω

(1)
k , r

〉
+ ϕ

(1)
k

))∑
j∈J

β
(2)
j cos

(〈
ω

(2)
j , r

〉
+ ϕ

(2)
j

)
=
∑
k∈K

∑
j∈J

β
(1)
k β

(2)
j cos

(〈
ω

(1)
k , r

〉
+ ϕ

(1)
k

)
cos
(〈

ω
(2)
j , r

〉
+ ϕ

(2)
j

)
=
∑
k∈K

∑
j∈J

β
(1)
k β

(2)
j

1

2

(
cos
(〈

ω
(1)
k , r

〉
+
〈
ω

(2)
j , r

〉
+ ϕ

(1)
k + ϕ

(2)
j

)
+ cos

(〈
ω

(1)
k , r

〉
−
〈
ω

(2)
j , r

〉
+ ϕ

(1)
k − ϕ

(2)
j

))
=
∑
k∈K

∑
j∈J

β
(1)
k β

(2)
j

1

2

(
cos
(〈

ω
(1)
k + ω

(2)
j , r

〉
+ ϕ

(1)
k + ϕ

(2)
j

)
+ cos

(〈
ω

(1)
k − ω

(2)
j , r

〉
+ ϕ

(1)
k − ϕ

(2)
j

))
=
∑
ω′∈D

β̃ω′ cos(⟨ω′, r⟩+ ϕ̃ω′) (3)

Lemma 2. Let {ωj ∈ RD}j∈J and {ϕj ∈ R}j∈J be a collection of frequency vectors and scalar phases, respectively,
indexed by the set J ⊆ N. Furthermore, {βj ∈ R}j∈J be a set of scalar coefficients, and let k ∈ N Then,∑

j∈J
βj cos (⟨ωj , r⟩+ ϕj)

k

=
∑

ω′∈Hk

β̃ω′ cos(⟨ω′, r⟩+ ϕ̃ω′) (4)

where

Hk

(
{ωj}j∈J

)
⊆ H̃k

(
{ωj}j∈J

)
:=

ω′ =
∑
j∈J

cjωj

∣∣∣∣∣cj ∈ Z ∧
∑
j∈J

|cj | ≤ k

 (5)

Note that we will often use the notation Hk and H̃k instead of explicitly writing the dependence on the set
(
{ωj}j∈J

)
when it is clear from the context.
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Proof. The statement trivially holds for k = 1. Assume it also holds for k, then

∑
j∈J

βj cos (⟨ωj , r⟩+ ϕj)

k+1

=

∑
j∈J

βj cos (⟨ωj , r⟩+ ϕj)

k∑
j∈J

βj cos (⟨ωj , r⟩+ ϕj)

 (6)

=

( ∑
ω′∈Hk

β̃ω′ cos(⟨ω′, r⟩+ ϕ̃ω′)

)∑
j∈J

βj cos (⟨ωj , r⟩+ ϕj)

 (7)

=
∑

ω′∈D{Hk,{ωj}j∈J}
β′
ω′ cos(⟨ω′, r⟩+ ϕ′

ω′) (8)

=
∑

ω′∈Hk+1

β′
ω′ cos(⟨ω′, r⟩+ ϕ′

ω′) (9)

(10)

where Eq. (7) holds by assumption and Eq. (8) holds because of the previous lemma. Moreover we have

Hk+1 = D
{
Hk, {ωi}i∈J

}
=

{
ω′ = ωh ± ωi

∣∣∣∣∣ωh ∈ Hk, i ∈ J

}
(11)

⊆

ω′ =
∑
j∈J

cjωj ± ωi

∣∣∣∣∣cj ∈ Z ∧
∑
j∈J

|cj | ≤ k, i ∈ J

 (12)

⊆

ω′ =
∑
j∈J

cjωj

∣∣∣∣∣cj ∈ Z ∧
∑
j∈J

|cj | ≤ k + 1

 (13)

(14)

So Eq. (4) holds for k + 1 as well. Then by induction Eq. (4) holds ∀k ∈ N

S1.1.2 Main proof

Recall that we are interested in understanding the expressive power of INR architectures that can be decomposed into a
mapping function γ : RD → RT followed by a multilayer perceptron (MLP), with weights W (ℓ) ∈ RFℓ−1×Fℓ , bias b(ℓ) ∈
RFℓ , and activation function ρ(ℓ) : R → R, applied elementwise; at each layer ℓ = 1, . . . , L − 1. That is, if we denote by
z(ℓ) each layers post activation, most INR architectures compute

z(0) = γ(r),

z(ℓ) = ρ(ℓ)
(
W (ℓ)z(ℓ−1) + b(ℓ)

)
, ℓ = 1, . . . , L− 1 (15)

fθ(r) = W (L)z(L−1) + b(L).

Based on this architecture we can prove the following theorem.

Theorem 1. Let fθ : RD → R be an INR of the form of Eq. (15) with ρ(ℓ)(z) =
∑K

k=0 αkz
k for ℓ > 1. Furthermore, let

Ω = [Ω0, . . . ,ΩT−1]
⊤ ∈ RT×D and ϕ ∈ RT denote the matrix of frequencies and vector of phases, respectively, used to

map the input coordinate r ∈ RD to γ(r) = sin(Ωr + ϕ). This architecture can only represent functions of the form

fθ(r) =
∑

ω′∈H(Ω)

cω′ sin (⟨ω′, r⟩+ ϕω′), (16)

where

H(Ω) ⊆

{
ω′ =

T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ KL−1

}
. (17)
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Proof. We will prove the statement by induction. To that end, let us denote the preactivation vector at each layer as v(ℓ), i.e.
z(ℓ) = ρ(ℓ)

(
v(ℓ)

)
. We will first derive the expressions for the base case.

Base case Consider the preactivation of a node at the first layer of the neural network for any mapping of the form in
Eq. (15). Then

v
(1)
j = W

(1)
j γ(r) =

T−1∑
t=0

btj cos (⟨Ωt, r⟩+ ϕtj) (18)

with some btj ∈ R and ϕtj ∈ R depending on the first layer weights connected to that node. Also note that interchanging
sines with cosines only affects the phase terms.

Therefore, using the result of Lemma 2, and after applying the activation function, the output of each node at the first layer
is given by

z
(1)
j = ρ(1)

(
v
(1)
j

)
=

K∑
k=0

αk

(
v
(1)
j

)k
=

K∑
k=0

αk

(
T−1∑
t=0

btj cos (⟨Ωt, r⟩+ ϕtj)

)k

(19)

=

K∑
k=0

αk

∑
ω′

k∈Hk

βω′
k
cos(⟨ω′

k, r⟩+ ϕω′
k
) (20)

=
∑

ωk∈H′
K

β̃ωk
cos(⟨ωk, r⟩+ ϕ̃ωk

) (21)

where H′
K :=

K⋃
j=1

Hj and we use the definitions of Hk and H̃k in Lemma 2. Therefore, since ∀kHk ⊆ H̃k by construction,

and ∀j ≤ k Hj ⊆ H̃k; then it holds that H′
K ⊆ H̃K , i.e.,

H′
K ⊆ H̃K =

{
ω′ =

T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ K

}
. (22)

Induction step Assume the output of the nodes at layer ℓ satisfy the following expression:

z
(ℓ)
j =

∑
ω′∈H(ℓ)(Ω)

cω′,j sin (⟨ω′, r⟩+ ϕω′,j) (23)

where

H(ℓ) ⊆ H̃Kℓ =

{
ω′ =

T−1∑
t=0

stΩt

∣∣∣∣∣ st ∈ Z ∧
T−1∑
t=0

|st| ≤ Kℓ

}
. (24)

Then, the preactivation of any node at the (ℓ+ 1)th layer can be expressed as:

v
(ℓ+1)
j =

∑
ω′∈H(ℓ)(Ω)

bω′,j sin (⟨ω′, r⟩+ ϕ̃ω′,j) (25)

since the sum of cosines with the same frequency only result in a cosine with the same frequency but with a modified phase
and amplitude. Hence, after applying the activation function the output of the jth node at the (ℓ + 1)th layer can be written
as:

z
(ℓ+1)
j = ρ(ℓ+1)

(
v
(ℓ+1)
j

)
=

K∑
k=0

αk

(
v
(ℓ+1)
j

)k
=

K∑
k=0

αk

 ∑
ω′∈H(ℓ)(Ω)

bω′,j sin (⟨ω′, r⟩+ ϕ̃ω′,j)

k

(26)
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Let us inspect the term
(∑

ω′∈H(ℓ)(Ω) bω′,j sin (⟨ω′, r⟩+ ϕ̃ω′,j)
)k

. Instead of directly applying Lemma 2, we will leverage

the fact that all the frequencies ω′ ∈ H(ℓ) share a similar structure. More precisely, they all can be represented as a sum of
the frequencies in the set Ω. To that end, let us show the following intermediate result: ∑

ω′∈H(ℓ)(Ω)

bω′,j sin (⟨ω′, r⟩+ ϕ̃ω′,j)

k

=
∑

ω′∈H(ℓ)
k (Ω)

b̃ω′,j sin (⟨ω′, r⟩+ ˜̃
ϕω′,j) (27)

where H(ℓ)
k ⊆ H̃kKℓ . The base case for k = 1 holds trivially. Now assume Eq. (27) holds for k, then ∑

ω′∈H(ℓ)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ ϕ̃ω′,j)

k+1

=

 ∑
ω′∈H(ℓ)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ ϕ̃ω′,j)

k  ∑
ω′∈H(ℓ)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ ϕ̃ω′,j)


(28)

=

 ∑
ω′∈H(ℓ)

k
(Ω)

b̃ω′,j sin (
〈
ω′, r

〉
+

˜̃
ϕω′,j)


 ∑

ω′∈H(ℓ)(Ω)

bω′,j sin (
〈
ω′, r

〉
+ ϕ̃ω′,j)


(29)

=
∑

ω′∈D
{
H(ℓ)

k
,H(ℓ)

}
˜̃
bω′,j sin (

〈
ω′, r

〉
+

˜̃̃
ϕω′,j) (30)

where last equality holds because of Lemma 2 and we have:

D
{
H(ℓ)

k ,H(ℓ)
}
=

{
ω1 ± ω2

∣∣∣∣∣ω1 ∈ H(ℓ)
k ,ω2 ∈ H(ℓ)

}
(31)

⊆

{
ω1 ± ω2

∣∣∣∣∣ω1 ∈ H̃kKℓ ,ω2 ∈ H̃Kℓ

}
(32)

=

{
T−1∑
t=0

s
(1)
t Ωt ±

T−1∑
t=0

s
(2)
t Ωt

∣∣∣∣∣
T−1∑
t=0

|s(1)t | ≤ kKℓ,

T−1∑
t=0

|s(2)t | ≤ Kℓ

}
(33)

=

{
T−1∑
t=0

(
s
(1)
t ± s

(2)
t

)
Ωt

∣∣∣∣∣
T−1∑
t=0

|s(1)t | ≤ kKℓ,

T−1∑
t=0

|s(2)t | ≤ Kℓ

}
(34)

⊆

{
T−1∑
t=0

s′tΩt

∣∣∣∣∣
T−1∑
t=0

|s′t| ≤ (k + 1)Kℓ

}
= H̃(k+1)Kℓ (35)

(36)

where the last line follows from triangle inequality. This proves our intermediate result in Eq. (27).
Now, let us use this result to complete the proof of the inductive step. In particular, we can now write Eq. (26) as

z
(ℓ+1)
j =

K∑
k=0

αk

∑
ω′∈H(ℓ)

k (Ω)

b̃ω′,j,k sin (⟨ω′, r⟩+ ˜̃
ϕω′,j,k) (37)

=
∑

ω′∈H(ℓ+1)(Ω)

cω′,j sin (⟨ω′, r⟩+ ϕω′,j) (38)

where H(ℓ+1) :=
K⋃

k=1

H(ℓ)
k ⊆

K⋃
k=1

H̃kKℓ ⊆ H̃KKℓ = H̃Kℓ+1 . This sequence of inclusions concludes the proof.
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S1.2. Two-layer SIREN example

Example. Let fθ be a three-layer SIREN defined as 1

fθ(r) = w(2)⊤ sin
(
W (1) sin (Ωr)

)
, (39)

where r ∈ R, Ω ∈ RT , W (1) ∈ RF×T , and w(2) ∈ RF . The output of this network can equivalently be represented as

fθ(r) =

F−1∑
m=0

∞∑
s1,...,sT=−∞

cm,s1,...,sT sin

((
T−1∑
t=0

stωt

)
r

)
, (40)

where ω⊤
t ∈ RD denotes the tth row of Ω,

cm,s1,...,sT =

(
T−1∏
t=0

Jst

(
W

(1)
m,t

))
w(2)

m , (41)

and Js denotes the Bessel function of first kind of order s.

Proof. As we have discussed before, the first layer in SIREN plays the role of the frequency mapping, i.e.

z(0) = sin
(
W (0)r

)
= sin(Ωr). (42)

Hence the input of a node at the next layer is a linear combination of sinusoids at mapping frequencies. The output of a node
at second layer can be written as:

z(1)m = sin
(
W (1)

m,: sin (Ωr)
)

(43)

= sin

(
T−1∑
t=0

W
(1)
m,t sin (ωtr)

)
(44)

= Im

{
exp

(
j

(
T−1∑
t=0

W
(1)
m,t sin (ωtr)

))}
(45)

= Im

{
T−1∏
t=0

exp
(
jW

(1)
m,t sin (ωtr)

)}
(46)

= Im

{
T−1∏
t=0

∞∑
st=−∞

Jst(W
(1)
m,t) exp (jstωtr)

}
(47)

= Im


∞∑

s0=−∞
· · ·

∞∑
sT−1=−∞

T−1∏
t=0

Jst(W
(1)
m,t) exp (jstωtr)

 (48)

=

∞∑
s1,...,sT=−∞

Im

{
T−1∏
t=0

Jst(W
(1)
m,t) exp (jstωtr)

}
(49)

=

∞∑
s1,...,sT=−∞

Im

{(
T−1∏
t=0

Jst(W
(1)
m,t)

)
exp

(
j

T−1∑
t=0

stωtr

)}
(50)

=

∞∑
s1,...,sT=−∞

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
Im

{
exp

(
j

T−1∑
t=0

stωtr

)}
(51)

=

∞∑
s1,...,sT=−∞

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
sin

(
T−1∑
t=0

stωtr

)
(52)

1Note that we have omitted the bias terms to simplify the notation. These biases only change the phase terms in the sinusoids of the sum.
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where Jn(·) represents the Bessel function of the first kind of order n and (47) follows from the Fourier series expansion of
exp(jβ sin(ω0x)):

exp(jβ sin(ω0x)) =

∞∑
n=−∞

Jn(β) exp (jnω0x). (53)

Therefore, the output of the neural network can be written as:

fθ(r) = w(2)⊤z(1) =

F−1∑
m=0

w(2)
m z(1)m =

F−1∑
m=0

w(2)
m

∞∑
s1,...,sT=−∞

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
sin

(
T−1∑
t=0

stωtr

)
(54)

=

F−1∑
m=0

∞∑
s1,...,sT=−∞

w(2)
m

(
T−1∏
t=0

Jst(W
(1)
m,t)

)
sin

(
T−1∑
t=0

stωtr

)
(55)
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S2. Imperfect recovery
S2.1. Experimental details

For the experiment in Section 4.1, we train an FFN with four fully connected layers: three hidden layers with dimension
256 followed by an output layer of dimension C = 3. All the networks presented in Fig.2 are trained for 2000 iterations with
Adam optimizer [2]. The training image has the size of 512× 512 and we use all the available pixels during training2.

S2.2. Additional experiments

We further demonstrate the imperfect recovery phenomenon with INRs for different networks and configurations. In
Fig. S1, we present the results for SIREN [7], where the first layer of the form z(0) = sin

(
ω0(W

(0)r + b(0))
)

can be
considered as the input mapping γ(r). For a fair comparison with FFNs and to better illustrate the strong dependence of
the learned representation on the chosen mapping, we do not perform any updates on the parameters of the initial layer, i.e.,
W (0) and b(0), during training. The initialization of these parameters ensures a similar mapping to that of FFN presented
in Figure 2 of the main text, i.e. two single frequency mappings with frequencies f0 = 1 and f0 = 0.5 followed by a rich
mapping. As for the rest of the architecture, we use the same number of layers and training strategy. As you can see in
Fig. S1, initializing the SIREN with this γ(r) results also in a set H(Ω) ⊆ {2πk|k ∈ Z}, which leads to a very imperfect
recovery with the reconstruction looking aliased in the spatial domain.

(a) SIREN (ω0 = 1)
W (0) = I

(b) SIREN (ω0 = 1)
W (0) = 0.5× I

(c) SIREN (ω0 = 30)
W (0) ∈ R256×2

(d) Ground Truth

Figure S1. Top row: Image reconstruction with SIREN [7] for different configurations. Middle row: Magnitude of the DFT of the
reconstruction. Bottom row: The center crop of size 32× 32 from the magnitude of the DFT of the reconstruction.

Note, however, that in the original formulation of SIREN [7], the parameters of the initial layer are also updated during
training. To see the effect that this has in the reconstruction, we repeat the same experiment with a SIREN3 with trainable
W (0) and b(0). Interestingly, as illustrated in Fig. S2, the aliasing effect is mostly eliminated in this case. This a result of
having a dynamic input mapping, which enables spreading the energy over all spectral coefficients rather than only the even
ones. Nevertheless, similar to our observations for Fig.2, we see that the reconstruction for low values of ω0 is also blurry
with most of the energy concentrated in the low frequencies.

For the sake of completeness, we also investigate the effect of having learnable parameters in γ(r) for FFNs. Specifically,
we repeat this same experiment for the single frequency mapping of the main text, γ(r) = [cos(2πfr), sin(2πfr)]T , where
we initialize the frequency variable f as f0. Note that f , now, is a trainable parameter. We denote this network as SFM*.

2The code to reproduce all our experiments using JAX [1] will be released upon acceptance.
3The notation *, e.g., SIREN*, denotes the corresponding INR involving input mapping with learnable parameters.
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(a) SIREN* (ω0 = 1)
W (0) = I

(b) SIREN* (ω0 = 1)
W (0) = 0.5× I

(c) SIREN* (ω0 = 30)
W (0) ∈ R256×2

(d) Ground Truth

Figure S2. Top row: Image reconstruction with SIREN [7] for different configurations. The notation * indicates that the parameters of the
initial layer are subject to gradient updates during training. Middle row: Magnitude of the DFT of the reconstruction. Bottom row: The
center crop of size 32× 32 from the magnitude of the DFT of the reconstruction.

(a) SFM* (f0 = 1) (b) SFM* (f0 = 0.5) (c) FFN* (σ = 1) (d) Ground Truth

Figure S3. Top row: Image reconstruction with FFN [9] for different configurations. SFM stands for single frequency mapping as in
Figure 2, i.e., γ(r, f) = [cos(2πfr), sin(2πfr)]T where the frequency variable is initialized as f0 and subject to gradient updates. In
general, the notation * indicates learnable input mapping. Middle row: Magnitude of the DFT of the reconstruction. Bottom row: The
center crop of size 32× 32 from the magnitude of the DFT of the reconstruction.

Similarly, we also train with an FFN* with trainable Ωi,j , randomly initialized as explained in Sec.2. Figure S3 shows the
results of these experiments with identical findings as in the main text and the SIRENs presented above.
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S3. Aliasing
S3.1. Experimental details

For the experiment in Section 4.2, we train a SIREN with three fully connected layers: two hidden layers with dimension
128 followed by the output layer of dimension 1. All the networks presented in Fig.3 are trained for 2000 iterations using
Adam [2] with a learning rate of 1×10−4. For the training data, we generate a single frequency signal g(r) = sin(2π ·23r) on
128 evenly spaced samples in the range [0, 1], i.e., sampled with a frequency of fs = 128 and test the learned representation
fθ(r) with samples from the same signal with fs = 256.

S3.2. Additional experiments

For the sake of completeness, and to show that aliasing is prevalent across INR families, we repeat the same experiment
using FFNs [9] initialized with different σ. Recall that σ determines the standard deviation of the the distibution of Ωi,j at
initialization, i.e., Ωi,j ∼ N (0, σ2). The results presented in Fig. S4 highlight that the same aliasing phenomenon observed
for SIRENs in Fig.3 happens identically for FFNs.

σ
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σ
=
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50 0 50
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100 0 100
30
0

30

f (Hz)
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f = 23f = 23

f (r)
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Sampling frequency fs = 128Hz Sampling frequency fs = 256Hz

Figure S4. Magnitude of the spectrum of g(r) = sin(2π · 23r) and its FFN [9] reconstruction trained at fs = 128 Hz. Top row shows
σ = 100, and bottom row σ = 3. On the left the signals are sampled at fs = 128 Hz and on the right at fs = 256 Hz.
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S4. NTK eigenfunctions as dictionary atoms
S4.1. Estimation of eigenfunctions of the NTK

As it is common in the kernel literature, in this work, we use the eigenvectors of the kernel Gram matrix to approximate
the eigenfunctions of the NTK. Specifically, unless stated otherwise, in all our experiments we compute the Gram matrix
of the NTK at any θ0 using as samples the coordinates of all the pixels of an image, laid out on a grid of fixed resolution
(64×64). That is, we compute a Gram matrix of size 642×642. To that end, we use the empirical kernel fn function
from the neural tangents library [5] which allows to compute this matrix using a batch implementation. Note that this
operation can be computationally intense, scaling quadratically with the number of samples, but also quadratically with the
number of outputs. For this reason, we decided to use INRs with a single output and work only with grayscale images. The
results, however, are easily extensible to the multi-output setting.

Once we have the Gram matrix, we can perform its eigendecomposition and use the resulting eigenvectors to approximate
the values of the eigenfunctions ϕj(r) at the pixel coordinates. The inner products ⟨ϕj , gn⟩ are then easily approximated as

⟨ϕj , gn⟩ ≈
642∑
i=1

ϕj(ri)gn(ri). (56)

S4.2. Training details

In Section 5.2, we compare the generalization performance of several SIRENs (four hidden layers with dimension 256
followed by the output layer of dimension 1) with different initialization strategies. To that end, we train each of these
networks to reconstruct 100 validation images from the CelebA dataset using half of the pixels of the images for training.
The training pixel locations are random, but we use the same across all validation images. Generalization performance, is
then tested using the remaining half of the pixels. To be consistent with the empirical protocol proposed in [8], we use full
batch Adam [2] with a learning rate of 10−4 for the randomly initialized weights and use full batch gradient descent with
learning rate 10−2 for the meta learned weights, which they reported to be the optimal choice of optimizers and learning rates
for each individual case.

Figure S5 shows the evolution of the average training and test curves for each of these networks. As we can see, the
networks with a better energy concentration in Fig. 4, are the networks that train faster, and reach the best test performances.
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(a) Test
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(b) Training

Figure S5. The evolution of the reconstruction performance (average PSNR) of different representations for the first 10 training iterations
when trained on 100 validation images from CelebA dataset. The numbers for different SIREN instances indicate the value of ω0. Meta
indicates the learned initialization, whereas all the other networks are initialized randomly in accordance with the original implementa-
tion [7].

S4.3. Experiments on additional networks

For completeness, we also provide the results of these experiments using FFNs (a sinusoidal mapping of size 256 followed
by three hidden layers with dimension 256 followed by the output layer of dimension 1), instead of SIRENs in Fig. S6. Again,
we observe that those networks which have an energy profile more concentrated on the largest eigenvalues perform much
better.
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Figure S6. Average energy concentration of 100 validation images from CelebA on subspaces spanned by the eigenfunctions of the
empirical NTK associated to eigenvalues greater than a given threshold. Legend shows the average test PSNR after training to reconstruct
those images from 50% randomly selected pixels for 3 iterations. The value following FFN specifies the σ parameter of the given network.

S5. Meta-learning experiment
S5.1. Experimental details

Our meta-learning experiments consist of two phases: A first pre-training phase, in which we use MAML, to meta-learn
a good initialization from 5, 000 training images from CelebA using a learning rate of 10−5 as indicated in [8] and 5000
meta-iterations. In our experiments, we use a SIREN with four hidden layers with dimension 256 followed by the output
layer of dimension 1, randomly initialized prior to meta-learning using ω0 = 30. After pretraining, we finetune the networks
starting at the meta-learned weights using the training protocol described in Sec. S4.2.

To estimate the eigenfunctions of the NTK at the meta-learned weights we use the experimental setting described in
Sec. S5.1.

S5.2. Experiments with an additional meta-learning algorithm

We repeat the same experiments by replacing the meta-learning algorithm with Reptile. Fig. S7 shows the resulting energy
concentration plot and Fig. S11 shows the eigenfunctions of the NTK at the meta-learned weights using Reptile. As we can
see, the results agree completely with those found using MAML. This suggests that the reshaping effect of meta-learning on
the NTK is a general phenomenon, which might be induced using multiple algorithms.

Figure S7. Average energy concentration of 100 validation images from CelebA on subspaces spanned by the eigenfunctions of the
empirical NTK associated to eigenvalues greater than a given threshold. Legend shows the average test PSNR after training to reconstruct
those images from 50% randomly selected pixels. The meta-learned weights are computed using Reptile.
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S5.3. Experiments on additional networks

For completeness, we also provide the results of these experiments using an FFN (a sinusoidal mapping of size 256
followed by three hidden layers with dimension 256 followed by the output layer of dimension 1) instead of a SIREN. Prior
to meta-learning the input mapping is initialized using σ = 1. Fig. S6 shows these additional results, where we see that
meta-learning does also improve the energy concentration of the validation images on the principal eigenspace of the NTK
for the FFNs. Performance does also improve significantly in this case.

S5.4. Comparison with standard training

Finally, as a baseline, we provide a comparison between standard training and meta-learning, both in terms of the dynamics
of the NTK, and fine-tuning performance. Specifically, we repeated the same experimental pipeline described before, where
instead of pretraining using MAML, we pretrain a SIREN using Adam to reconstruct one training image in CelebA.
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5 iter         17.15
50 iter       16.50
5000 iter   13.50
Meta          23.06

Figure S8. Average energy concentration of 100 validation images from CelebA on subspaces spanned by the eigenfunctions of the
empirical NTK associated to eigenvalues greater than a given threshold. Legend shows the average test PSNR after training to reconstruct
those images from 50% randomly selected pixels. The number of iterations specify those of pretraining on the single task.

As we can see in Fig. S8 and Fig. S11 has a signficant impact on the NTK. As described before in [3], training a neural
network to reconstruct a signal transforms the eigenfunctions of the final NTK such that they look like the target signals.
Surprisingly, though, we are seeing that for this particular set of tasks, fine-tuning from those initializations results in worse
performance than starting from scratch, i.e., there is a negative transfer between different tasks.
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(a) Test
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Figure S9. The evolution of the reconstruction performance (PSNR) of a SIREN, where the parameters of the network are (i) initialized
randomly, (ii) pretrained on a single image for different number of training iterations, and (iii) meta-learned. Note that three different
realizations of the networks with pretrained weights on a single image are provided for each different number of training iterations.

We can understand this phenomenon using the signal dictionary analogy, which is summarized by Fig. S8. As we can see,
the more we pretrain the networks to reconstruct a specific training image, the more the energy profile of the validation set
shifts to the smallest eigenvalues of the pretrained kernel, i.e, the learned dictionary has a worse compression performance
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than the randomly initialized NTK. As a result, as illustrated in Fig. S9, we see that the more pretrained networks take longer
to converge when fine-tuned, and reach worse generalization performances.

Inspecting the eigenfunctions of these different networks, and interpreting them as dictionary atoms, gives us one last
piece of intuition to understand the dynamics of meta-learning. Indeed, as we can see in Fig. S11 the eigenfunctions of the
standardly trained networks do really look like the target signals, having very specific crisp edges and textures, which might
not directly appear on other images. That is, the dictionaries of these networks are overfitted to their specific pretraining task.
On the other hand, meta-learning can leverage much more data to construct a dictionary whose atoms can be easily composed
to create face images. We believe that understanding the dynamics of this process will be a very fruitful avenue for future
research.

S6. Performance on NTK eigenfunctions
In this section we empirically demonstrate that it is easier for a network to learn the NTK eigenfunctions corresponding

to larger eigenvalues. Figure S10 shows the PSNR reached after training the network for 2000 iterations with the target set
to the NTK eigenfunction at initialization with the corresponding index. Even though the meta-learned weights are used in
this experiment, this phenomenon applies to other networks and weights as well and is previously discussed in [6].
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Figure S10. PSNR performance of a SIREN trained on increasing eigenfunctions of its NTK at initialization.
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Figure S11. First ten eigenfunctions corresponding to the largest eigenvalues of the empirical NTK of SIREN [7] at initialization for
different cases. The first three rows represent different realizations of random initialization. Rows 4-5-6 illustrate the eigenfunctions of
a SIREN after meta-learning on a randomly chosen (single) training image from the CelebA dataset [4] with corresponding number of
meta-learning updates on learnable parameters [8]. Rows 7-8-9 and 10-11-12 are the outcomes of the same experiment for different choice
of the training image used for meta-learning. The bottom row depicts the eigenfunctions of the learned initialization when we use 5, 000
training images from the CelebA dataset for meta-learning.
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