Supplementary Material of ‘“Blind Image Super-resolution with Elaborate
Degradation Modeling on Noise and Kernel”’

Zongsheng Yue!, Qian Zhao?, Jianwen Xie?, Lei Zhang?, Deyu Meng?®, Kwan-Yee K. Wong'

'The University of Hong Kong, Hong Kong, China ?Xi’an Jiaotong University, Xi’an, China
3Cognitive Computing Lab, Baidu Research, Bellevue, USA
“The Hong Kong Polytechnic University, Hong Kong, China
*Peng Cheng Laboratory, Shenzhen, China

Abstract

In this supplementary material, we provide more details
on the calculation of the E-Step and the network architec-
tures of the image generator G. Besides, we also present
more additional experiments.

1. Calculation Details on the E-Step

Given current model parameters {cwid, Lowd, Aold }, We
denote the posterior of z under them as pya(z|y). In E-
Step, our goal is to sample 2z from pea(z|y) using Langevin
dynamics [12]:
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7 indexs the time step for Langevin dynamics, § denotes the
step size, ¢ is the Gaussian white noise used to prevent trap-
ping into local modes, ® represents the Hadamard product.
As for the derivation of g(z), we firstly factorize poa(z, y)
as follows:

Poid (2, Y) = P(Y|toid, Loid, Aold, 2)P(oid|2)p(2), (3)

where p(y|oid, Loid, Aold; 2), P(od|2), and p(z) are de-
fined in Eq. (5), Eq. (11), and Eq. (12) of the maintext,

Table 1. Performances of the proposed BSRDM with different settings
of p on Set14. The PSNR/SSIM/LPIPS results are all averaged on differ-
ent degradations combined with camera sensor noise and six different blur
kernels (see Fig. 2 of the maintext) under scale factor 2.

Metrics

P PSNR?T SSIM?T LPIPS|

0 27.20 0.725 0.379
0.01 27.37 0.737 0.378
0.10 27.84 0.762 0.366
0.20 28.01 0.771 0.360
0.30 28.06 0.774 0.356
0.40 28.09 0.774 0.355
0.50 28.06 0.772 0.355
1.00 27.56 0.744 0.383

Table 2. Performances of the proposed BSRDM with different settings
of «v on Setl4. The PSNR/SSIM/LPIPS results are all averaged on differ-
ent degradations combined with camera sensor noise and six different blur
kernels (see Fig. 2 of the maintext) under scale factor 2.

Metrics
v PSNR?T SSIM?T LPIPS|
0.67 28.01 0.771 0.360
1.00 27.83 0.760 0.367
2.00 27.27 0.738 0.375

respectively. By substituting these three terms into Eq. (3),
we can easily obtain the formulation in Eq. (2) after simple
derivation.

2. Network Architecture

As for the generator G in the maintext, we follow the
“hourglass” archtechture in DIP [10]. However, we used a
very tiny version that contains much fewer parameters as
shown in Sec. 5.4 of the maintext. The detailed network
architecture is shown in Fig. 1. Note that, as for the upsam-
pling operation, the nearest interpolation is employed.

3. Experimental Results
3.1. Hyper-parameter Analysis

As shown in Sec. 3.2 of the maintext, our proposed
BSRDM mainly involves two hyper-parameters, i.e., p
and . Next, we empirically analyse the sensitiveness of
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Figure 1. The detailed network architecture of the generator G. “Conv (k,p,s)” represents the 2-D convolution operator with kernel
size k, stride s and reflection padding size p, “BN” represents the Batch Normlization layer, “LeakyReLU” represents the LeakyReLU
activation function with negative slope 0.25, and “Upsampling (s)” represents the nearest interpolation operator with scale factor s. The
blue or orange rectangles denote the feature maps of the intermediate layers, and the numbers along them are the corresponding number of

channels.
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Figure 2. One typical example of the proposed method under different settings of p for the degradation with camera sensor noise on Set14.
From left to right: (a) the zoomed LR image, (b) the HR image, (c)-(d) the super-resolved results of BSRDM under different p values.
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Figure 3. Visual super-resolution results of the “dog” example in
RealSRSet [14]. From left to right: (a) the zoomed LR image,
(b)-(c) the recovered HR images of DIPFKP [5] and the proposed
BSRDM, respectively.

BSRDM to them.

Hyper-parameter p: Intuitively, the hyper-paramter
p controls the relative importance of the hyper-Laplacian
prior in our method. Table 1 lists the PSNR/SSIM perfor-
mance of our proposed BSRDM under different p values on
Set14 [13], and one corresponding visual results are shown
in Fig. 2. It can be easily seen that BSRDM performs very

stably and well in range of [0.2, 0.5], but larger p value tends
to produce more smooth results. Therefore, taking both of
the quantitative and qualitative results into consideration,
we set p to be 0.20 in our experiments.

Hyper-parameter : The hyper-paramter v reflects the
strength of the sparsity constraint on the image gradients.
The Eq. (11) of the maintext degenerates into the tradi-
tional Laplacian or Gaussian distribution when v equals 1
or 2. Dilip Krishnan and Rob Fergus [4] pointed out that
the hyper-Laplacian with v = 2/3 is a better model of im-
age gradients than a Laplacian or a Gaussian. Here, we
list the quantitative performance of our BSRDM under dif-
ferent settings of v in Table 2. It can be easily observed
that BSRDM achieves the best results when ~y equals to 2/3,
which is in accordance with the conclusion of Dilip Krish-
nan and Rob Fergus [4].
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Figure 4. Three typical visual results on the RealSRSet [14] with scale factor 4. The best and second best non-reference metrics are
highlighted in red and blue. Please zoom in for best view.
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Figure 5. Three typical visual results on the RealSRSet [14] with scale factor 4. The best and second best non-reference metrics are
highlighted in red and blue. Note that this figure is the same with the Fig. 5 of the maintext, but the non-reference metrics (i.e., NIQE,
NRQM and PI) are additionally marked for each image. Please zoom in for best view.

3.2. Limitations real noise, its recovered result contains obvious artifacts.
On the contrary, the proposed BSRDM is able to remove
most of the noise and obtains clean super-resolved HR im-
age. Even though achieving superior performance, BSRDM
still has two major limitations. Firstly, the recovered image

Figure 3 displays a real super-resolution example, in
which the LR image is heavily corrupted by camera sen-
sor noise. It can be easily observed that the current SotA
method DIPFKP cannot handle such case with complicated



Table 3. The non-reference NIQE, NRQM and PI comparison results of different methods on the RealSRSet data set. The best and second

best results are highlighted in red and blue.

Metrics Methods
CSC [3] RCAN [15] ZSSR [9] DoubleDIP [3] DIPFKP [5] BSRDM (ours)
NIQE] 5.87 5.61 4.73 7.29 7.04 6.23
NRQMT 4.16 4.58 5.36 5.22 4.45 3.99
PI1) 5.85 5.51 4.69 6.04 6.29 6.12

Table 4. PSNR/SSIM/LPIPS results of different comparison methods on DIV2K100. All the results are averaged on six differen degradations with blur
kernels as shown in Fig. 2 of the maintext. The best results are highlighted in bold. The gray results indicate unfair comparisons due to the mismatched

degradations.
Noise Scale Metrics l Methods

types [ RCAN [15] [ ZSSR-B [9] [ ZSSR-NB [Y] [ DoubleDIP [8] [ DIPFKP [5] [ BSRDM (ours)

PSNRT 25.92 26.00 30.52 25.17 27.38 29.07

X2 SSIM?T 0.720 0.734 0.855 0.689 0.749 0.800

LPIPS| 0.343 0.322 0.284 0.448 0.398 0.337

PSNRT 22.99 23.13 27.18 22.05 26.68 28.22

Case 1 x3 SSIMT 0.598 0.616 0.766 0.579 0.718 0.769

LPIPS| 0.407 0.397 0.376 0.517 0.452 0.373

PSNRT 21.16 21.43 26.85 20.17 25.89 27.20

x4 SSIM?T 0.526 0.548 0.736 0.514 0.696 0.732

LPIPS| 0.467 0.462 0.423 0.546 0.474 0.414

r PSNRT 25.49 25.69 27.72 24.88 27.21 28.14

X2 SSIM?T 0.689 0.708 0.761 0.685 0.748 0.779

LPIPS| 0.415 0.397 0.397 0.460 0.415 0.385

PSNRT 22.77 2291 25.71 21.69 26.16 26.84

Case 2 X3 SSIM?T 0.580 0.599 0.702 0.566 0.698 0.730

LPIPS| 0.497 0.480 0.470 0.541 0.492 0.401

PSNRT 21.16 21.24 25.10 20.06 25.10 25.71

x4 SSIM T 0.519 0.538 0.672 0.503 0.660 0.685

LPIPS| 0.551 0.540 0.517 0.582 0.535 0.509

of BSRDM is smooth, since the Lo loss function (see Eq.
(17) of the maintext) and the hyper-Laplacian prior on im-
age gradients in it both favor smoothing the generated HR
image. Secondly, BSRDM cannot hallucinate more image
textures that not exists in the observed LR image, e.g., hairs
of the dog in Fig. 3, and is thus inferior to the GAN-based
methods [11, 11] on this point. In the future, it might be ex-
pected to develop more powerful image priors specifically
to overcome these limitations.

3.3. Experiments on the Real Data
3.3.1 More Visual Results

Figure 4 displays three more visual super-resolution results
on RealSRSet [14] with scale factor 4. In the first (top
row) and second (middle row) examples, the LR image is
with obvious camera sensor noise. The comparison meth-
ods cannot deal with such degradation with complicated
real noises, while our BSRDM is able to remove most of
the noises, indicating the effectiveness of the proposed non-
ii.d. noise modeling method. In the third example (bottom
row), it can be easily seen that the recovered HR image by
BSRDM is with sharper clearer details.

3.3.2 Disscussion on the Non-reference Metrics

Since the ground-truth for the RealSRSet [I14] is not
available, three non-reference metrics (i.e., NIQE [7],

NRQM [6] and PI [2]) are considered as quantitative eval-
uation. As shown in Table 3, BSRDM and the current
SotA method DIPFKP [5] both fail to achieve promising
results. However, in Fig. 4 and Fig. 5, we can easily ob-
served that the recovered results by BSRDM is evidently
better than other comparison methods. We argue that these
non-reference metrics are not consistent with our perceptual
visual system. In the future work, we will make our best ef-
fort to develop more rational non-reference metric to match
with and facilitate current researches on SISR.

3.4. Experiments on the Synthetic Data

In Table 4, we list the performance comparisons of dif-
ferent methods on the dataset DIV2K100 [1]. Note that, due
to the computer memory limitation, we cannot give the re-
sults of CSC [3] in Table 4. It can be easily observed that the
proposed BSRDM illustrates obvious superiorities than the
comparison methods, which is consistent with that on Set14
in Table 1 of the maintext, Furthermore, we display more vi-
sual results of different methods on the synthetic data sets
in Fig. 6 (Gaussian noise) and Fig. 7 (camera sensor noise).
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Figure 6. Visual super-resolution results of different methods for the degradation with Gaussian noise under scale factor 3. The blur kernel
is shown on the upper-right conner of the zoomed LR image.
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Figure 7. Visual super-resolution results of different methods for the degradation with camera sensor noise under scale factor 3. The blur
kernel is shown on the upper-right conner of the zoomed LR image. Note that due to the computer memory limitation, we cannot provide
the super-resolution result of the method CSC for the second and third example in DIV2K100.
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