
Supplementary Material
Patch-level Representation Learning for Self-supervised Vision Transformers

A. Pre-training details
For unsupervised pre-training, we use the ImageNet [7] dataset for large-scale pre-training (see Sec. 4) and the MS

COCO [16] dataset with the train2017 split for medium-scale pre-training (see Sec. 5). Code is available at https:
//github.com/alinlab/SelfPatch.
ImageNet pre-training details. In Sec. 4, we perform unsupervised pre-training using ViT-S/16 [20] on the ImageNet [7]
dataset for 200 epochs with a batch size of 1024. In the case of the joint usage of DINO [2] and our method (i.e., DINO +
SelfPatch), we generally follow the training details of Caron et al. [2], including the optimizer and the learning rate schedule.
Specifically, we use the AdamW [18] optimizer with a linear warmup of the learning rate during the first 10 epochs, and the
learning rate is decayed with a cosine schedule. We also follow the linear scaling rule [9]: lr = 0.0005 · batchsize/256.
We use 2 global crops and 8 local crops (i.e., 2 × 2242 + 8 × 962) for multi-crop augmentation [1, 2]. For our aggregation
module, we use two class-attention blocks [21] without Layerscale normalization [21]. For the final output dimension of the
projection head, we use K = 65536 for the SSL projection head following Caron et al. [2] and K = 4096 for our projection
head. In Sec. 4, we use a publicly available DINO pre-trained model1 with 300 training epochs on the ImageNet as the
baseline, which also use the same hyperparameters as the above.
MS COCO pre-training details. In Sec. 5, we perform unsupervised pre-training using ViT-Ti/16 [20] on the MS COCO
[16] dataset with train2017 split for 200 training epochs with a batch size of 256. In the case of the joint usage of DINO [2]
and our method (i.e., DINO + SelfPatch), we use 2 global crops and 2 local crops (i.e., 2×2242+2×962) for the multi-crop
augmentation and K = 4096 for both SSL and SelfPatch projection head. In the case of the joint usage of MoBY [26] and
our method (i.e., MoBY + SelfPatch), we also perform the pre-training for 200 training epochs with a batch size of 256, and
follow the training details of Xie et al. [26] for both ViT-Ti/16 [20] and Swin-T [17].

B. Evaluation details
For evaluation, we perform object detection and instance segmentation on MS COCO [16], semantic segmentation on

ADE20K [27], and video object segmentation on DAVIS-2017 [19].
COCO object detection and instance segmentation. MS COCO [16] is large-scale object detection, segmentation, and
captioning dataset: in particular, train2017 and val2017 splits contain 118K and 5K images, respectively. We follow the
basic configuration of mmdetection2 [3] for fine-tuning Mask R-CNN [10] with FPN [15] under the standard 1x schedule.
In addition, we follow several details of El-Nouby et al. [8] for integrating Mask R-CNN with ViT-S/16.
ADE20K semantic segmentation. ADE20K [27] is a semantic segmentation benchmark containing 150 fine-grained se-
mantic categories and 25k images. We follow all the configurations of mmsegmentation3 [6] for fine-tuning Semantic
FPN [12] with 40k iterations and an input resolution of 512×512. We also perform large-scale fine-tuning experiments using
UPerNet [25] with 160k iterations and an input resolution of 512×512 in Appendix C.
DAVIS 2017 video object segmentation. DAVIS 2017 [19] is a video object segmentation dataset containing 60 training,
30 validation, and 60 testing videos. We follow the evaluation protocol of Jabri [11] and Caron et al. [2], which evaluates
the quality of frozen representations of image patches by segmenting scenes with the nearest neighbor between consecutive
frames.

C. UPerNet on ADE20K semantic segmentation
Here, we additionally evaluate semantic segmentation performances of DINO and DINO + SelfPatch for a large-scale fine-

tuning setup, i.e., a larger network and longer iterations. Specifically, we use UPerNet [25] with 160k iterations following Liu
et al. [17], while Wang [22] and El-Nouby et al. [8] do use Semantic FPN [12] with 40k iterations as we follow originally.
Tab. 1 summarizes the results. We emphasize that DINO + SelfPatch still achieves consistent improvements over DINO in

1https://github.com/facebookresearch/vissl.
2https://github.com/open-mmlab/mmdetection.
3https://github.com/open-mmlab/mmsegmentation.



all the metrics; e.g., DINO + SelfPatch achieves 0.9, 1.1, and 1.2 points higher than DINO in terms of the mIoU, aAcc,
and mAcc metrics, respectively. This comparison under the large-scale fine-tuning setup also verifies the effectiveness of
SelfPatch.

Method Network Param.(M) Iteration mIoU aAcc mAcc

DINO [2] ViT-S/16 + Semantic FPN 26 40k 38.3 79.0 49.4
+ SelfPatch (ours) ViT-S/16 + Semantic FPN 26 40k 41.2 80.7 52.1

DINO [2] ViT-S/16 + UPerNet 58 160k 42.3 80.4 52.7
+ SelfPatch (ours) ViT-S/16 + UPerNet 58 160k 43.2 81.5 53.9

Table 1. Transferring performances to ADE20K semantic segmentation using Semantic FPN [12] and UPerNet [25] with 40k and
160k iterations, respectively. All models are pre-trained on the ImageNet [7] dataset using ViT-S/16. The metrics, mIoU, aAcc, and mAcc,
denote the mean intersection of union, all pixel accuracy, and mean class accuracy, respectively.

D. Linear classification on ImageNet
We here evaluate the quality of pre-trained representations for the image classification task under the conventional linear

evaluation protocol [2, 4, 24]. Specifically, we train a supervised linear classifier on top of frozen features without the
projection head following the details of Caron et al. [2]; we use the SGD optimizer with a batch size of 1024 during 100
training epochs and report central-crop top-1 accuracy. Tab. 2 summarizes the results. Here, we would like to emphasize that
our primary applications of interest are dense prediction tasks (i.e., not classification tasks), where patch-level representation
learning can be more effective. Nevertheless, DINO + SelfPatch can outperform DINO even for ImageNet classification under
the same 300 training epochs; ours and DINO achieve 75.6% and 75.1%, respectively. Also, DINO + SelfPatch consistently
outperforms other self-supervised ViT baselines: MoCo-v3 [5] and MoBY [26]. It shows that our method is not only able to
enhance the performances on dense prediction tasks, but also maintain competitive performance on image classification.

Method Backbone Epoch Top-1 acc.

MoCo-v3 [5] ViT-S/16 300 73.2
MoBY [26] ViT-S/16 300 72.8

DINO [2] ViT-S/16 300 75.1
+ SelfPatch (ours) ViT-S/16 300 75.6

Table 2. ImageNet linear classification performances of the recent self-supervised ViTs pre-trained on the ImageNet [7] benchmark. We
train a supervised linear classifier on top of frozen features and report central-crop top-1 accuracy.

E. Comparison with concurrent work
Concurrent to our work, EsViT [13] introduces the region-matching (i.e., matching image patches) task for Vision Trans-

formers that considers the region correspondence (i.e., matching the two most similar regions) between two differently
augmented images. In particular, the region-matching task also has been investigated for ResNet; for example, DenseCL [23]
also matches the two most similar spatial representations between the two augmented images. One key difference from our
method is that the region-matching task finds positive pairs from two strongly augmented images, which necessarily requires
overlapping regions and may find noisy positives (i.e., not positives) in early training, while our method utilizes adjacent
patches in the same augmented image as the positives, which is a reasonable way to find reliable positives without constraints
of overlapping regions.

To further compare our method with the region matching task, we pre-train EsViT using ViT-Ti/16 on the MS COCO
dataset [16] (i.e., the same training details in Appendix A), and perform three evaluation downstream tasks: (a) COCO object
detection and instance segmentation, (b) ADE20K semantic segmentation, and (c) DAVIS 2017 video object segmentation.
As shown in Tab. 3, our method consistently outperforms EsViT with a large margin in all the metrics, e.g., (a) +2.8 APbb

on COCO detection, +1.7 APmk on COCO detection, (b) +3.5 mIoU on ADE20K segmentation, and (c) +3.5 (J&F)m
on DAVIS segmentation. We believe that restricting positive candidates to neighboring patches plays an essential role in
constructing effective patch-level self-supervision, and this work would guide a new research direction for patch-level self-
supervised learning.



COCO Detection COCO Segmentation ADE20K Segmentation DAVIS Segmentation

Method Backbone APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 mIoU aAcc mAcc (J&F)m Jm Fm

DINO [2] ViT-Ti/16 28.0 48.8 28.4 26.9 45.8 27.7 24.9 73.4 33.3 55.1 52.8 57.4
+ SelfPatch (ours) ViT-Ti/16 30.7 51.4 32.2 28.6 48.2 29.6 29.5 75.5 39.2 57.0 56.1 57.8

EsViT [13] ViT-Ti/16 27.9 49.0 28.0 26.9 45.9 27.7 26.0 73.5 34.5 53.5 50.8 56.2

Table 3. Transferring performances to various downstream tasks: COCO object detection and instance segmentation, ADE20K seman-
tic segmentation, and DAVIS 2017 video object segmentation. All models are pre-trained on the MS COCO [16] dataset with train2017

split using ViT-Ti/16. We use the same evaluation details in Appendix B.

F. Importance of positional encoding
In this section, we investigate the importance of positional encoding (PE) in a dense prediction task, similar to Chen et

al. [5]. Specifically, we pre-train ViT-S/16 models on COCO with or without PE, and evaluate their segmentation per-
formances on DAVIS. Table 4 shows that learning PE is still effective even under SelfPatch, while SelfPatch consistently
improves the performance regardless of PE. It implies that the role of positional inductive bias in a dense prediction task
would be quite important, and our method, SelfPatch, orthogonally contributes to improving patch-level representations.

Method PE (J&F)m Jm Fm

DINO X 55.1 52.8 57.4
DINO + SelfPatch X 57.0 56.1 57.8

DINO 51.7 49.5 54.0
DINO + SelfPatch 52.9 50.5 55.2

Table 4. Importance of positional encoding (PE). All models are pretrained on the MS COCO [16] dataset with train2017 split using
ViT-S/16. We use the same evaluation details for DAVIS 2017 video object segmentation in Appendix B.

G. Effects of the number of positive patches under varying patch sizes
We primarily focus on the popular setup of 224 × 224 images and 16 × 16 patches, where k = 4 works as we validated

throughout the paper. However, this choice may not be optimal for other setups; we additionally perform an ablation study on
a different dataset, ImageNet-10 [14], with 8× 8, 16× 16 and 32× 32 patches from 224× 224 images. Table 5 shows their
segmentation performances on DAVIS and 20-NN (i.e., 20 nearest neighbor classifier) classification performances following
Caron et al. [2]. Overall, it suggests that the effective number of positives may depend on the relative size of patches in an
image. For example, k = 4, 6 achieves the best performance for 8× 8 and 16× 16 patch sizes on both the dense prediction
and the classification tasks, while k = 2 does for the patch size 32× 32. This is because smaller patches would contain more
positive patches in their neighbors. Hence, we recommend to use k = 4 in general cases (e.g., 8× 8 and 16× 16), but k = 2
when considering a larger patch size (e.g., 32× 32) for 224× 224 images.

Patch size (J&F)m Acc.
Method k 32 × 32 16 × 16 8 × 8 32 × 32 16 × 16 8 × 8

DINO - 24.9 37.6 48.7 76.0 83.8 85.0

DINO + SelfPatch

1 34.9 46.5 50.6 80.0 85.0 87.0
2 36.5 52.9 57.3 80.2 86.0 88.0
4 36.3 53.1 61.7 75.0 85.8 88.4
6 36.3 52.6 62.0 75.6 85.0 87.4
8 33.2 50.4 60.4 75.2 82.6 87.2

Table 5. Effects of the positive number k under varying the different patch sizes. All models are pre-trained on ImageNet-10 [14], and
evaluated on DVAIS video segmentation and ImageNet-10 classification.

In addition, we count the number of positive patches in the COCO [16] validation images by using their ground-truth
segmentation labels and found 4.3±1.2 (k ≈ 4) adjacent positives (on average) for 16× 16 patches from 224× 224 images.



Here, we measure the cosine similarities among adjacent patches and use the threshold of 0.95 for counting the positives.
Interestingly, we observe that further utilizing the ground-truth segmentation labels for the adjacent positive selection can
improve ours from 57.0 to 59.5 (J&F)m score on DAVIS [19]. We believe that developing an unsupervised adaptive
selection scheme on k would be an interesting direction to explore.
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