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1. Threshold methods
As discussed in Section 3.2 of the main paper, we utilize pseudo-labels created from the discriminator D to train the

Generator G, and vice versa. In order to create pseudo-labels, we apply a pre-defined thresholds Lth
G and Lth

D . Intuitively,
there are several different possibilities to define these thresholds. In this study, we explore three different ways including
hard-coded values as well as data distribution dependent values.

In the set of hard-coded values, we explore to utilize threshold based on the score predicted by the network (referred as
score threshold hereafter) or to set aside a fixed percentage of input feature vectors as anomalous (referred as percentage
threshold hereafter). Precisely, top 20% of the instances in a batch are declared anomalous when generating pseudo-labels
from G and top 5% instances are declared anomalous when generating pseudo-labels from D. Although, our method is not
strictly dependent on these hyper-parameters, we have observed that in general keeping the percentage low for anomalous
instances in generating pseudo-labels from D yields a slightly better performance, which may be attributed to the use of
negative learning. An analysis on increasing the anomalous examples is also provided in the subsequent discussion. In
score threshold, a fixed threshold of 0.5 over the scores of both G and D is applied. This way, any feature vector scoring
higher than this value is considered anomalous. Note that the output scores are normalized over an input batch. In percentage
threshold, we define a given percentage of feature vectors in the input batch as anomalous. This configuration makes the score
distribution irrelevant and top scoring features are automatically selected. A similar approach has been used by Sultani et
al. [1] in which each video is converted into a bag of fix number of segments and top few segments of a video are considered
anomalous. However, in our case, we do not assume any fix number of segments. Moreover, as we do not assume any
labels towards training, the threshold is applied on the input batch rather than a given video. There are a few examples in
the existing literature which assume that a random batch sampled from a given video may contain anomalies [2,4]. However
these approaches eventually use video-level labels to identify the batches in which anomalies might be present. We, on the
other hand, do not use any supervision. Therefore, we sample a batch from the whole dataset and utilize batch based statistics
to create psuedo-labels.

Finally, we also explore a data driven approach in which anomalies are defined if the anomaly score of a particular instance
is higher than µ + a(σ) of the score distribution, where µ is mean of the score distribution, σ is standard deviation of the
score distribution, and a is a parameter that controls the overall placement of threshold over the given score distribution. This
method is referred as data driven threshold hereafter. The intuition behind this approach is that most of the data is usually
normal and therefore, the mean of the data would lie near the mean of the normal data. Hence, as we move farther from this
mean, more anomalous instances may be separated successfully without including normal instances.

We compare the three threshold methods in Table 1. As seen, percentage and data driven threshold methods demonstrate
an identical performance which is due to the similar effect achieved by both approaches, i.e., dividing high scoring normal
instances from the anomalous instances (Fig. 1). In our experiments (Table 1), we found that percentage and data driven
threshold can be used interchangeably without losing any performance. Moreover, score threshold also performs comparably.
In order to explore this trend further, in Fig. 1, we also visualize the score distributions of G and D in a training batch. Two
peaks are clearly visible at both ends of the score distribution. Assuming one of the distribution contains scores from mostly
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(a) Scores distribution of an under-trained G
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(b) Scores distribution of an under-trained D

Figure 1. Scores distributions of G and D being trained in our proposed approach. X-axis represents the anomaly scores and y-axis
represents the frequency of these scores happening for the input data. As seen, in both models, two peaks are visible which may presumed
to be normal and anomalous. As long as our threshold method dissects the distribution in the middle of the two peaks, the performance of
our approach remains comparable.
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(a) Effects of threshold variation on G
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(b) Effects of threshold variation on D

Figure 2. Effects of threshold variations is studied for G and D in our proposed system. As long as the threshold remains in a reasonable
range of [0, 1], the performance remains comparable.

normal instances and the other contains scores from mostly anomalous instances, each of the threshold method explored in
our study can successfully separate the two distributions, thereby pseudo-labeling one as normal and the other as anomalous.

As the quantity of anomalies in a given system is unknown, it is important that the system is robust to a specific threshold
value. We examine our approach for this property by varying the threshold values by controlling the parameter a. A higher a
value, e.g. 1, essentially means that the threshold is placed higher (1 × σ away from the mean) towards the anomaly side of
the score distribution therefore, less instances are pseudo-labeled as anomalous. Fig. 2 summarizes the results of the study.
As seen, the proposed system performs almost identical when a is less than 1. However, the performance drops drastically
with a higher value of a. It is because with higher a value, the threshold value is places farther from the mean of the score
distribution towards the anomaly side. This results in more anomaly samples pseudo-labeled as normal, which consequently
degrades the performance. On the other hand, a lower than 1 value of a does not affect drastically as the data has abundant
normal samples and some mislabeled normal samples do not impact on the training as much. In general, as long as the
threshold value stays within the two peaks shown in Fig. 1, our proposed approach performs reasonably.

2. Additional Qualitative Results
Here, we present additional qualitative results, accompanying Sec. 4 in the main paper. Fig. 3 and Fig. 4 plot anomaly

scores produced by AEAllData and G & D trained in our GCL framework on several videos (from UCF-crime dataset). We
can notice that, despite being trained in an unsupervised mode, G trained in our GCL approach often produces better anomaly



Table 1. Comparison of several threshold methods for generating pseudo-labels.

Threshold Method AUC %
Percentage threshold 71.04

Score threshold 70.63
Data driven threshold 71.04

scores compared to AEAllData. Furthermore, since D is often more robust to noisy data [3, 4], it produces significantly
improved results in almost all cases.
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Figure 3. Anomaly scores plotted on burglary021 ((a), (b), and (c)), explosion029 ((d), (e), and (f)), roadaccident002 ((g), (h), and
(i)), shooting008 ((j), (k), and (l)), and stealing036 ((m), (n), and (o)) of UCF-Crime by AEAllData, G trained in GCL, and D trained in
GCL, respectively. In all cases cases G performs more reasonably compared to AEAllData, D successfully produces discriminative scores
for most normal and anomalous parts of the videos. In (f), scores for normal portions of the video also stay relatively higher. However,
compared to the other two models in (d) and (e), the overall scores are significantly separable.
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Figure 4. Anomaly scores plotted on normal904 ((a), (b), and (c)), normal905 ((d), (e), and (f)), normal907 ((g), (h), and (i)), and
normal911 ((j), (k), and (l)) of UCF-Crime by AEAllData, G trained in GCL, and D trained in GCL, respectively. D produces noticeably
low scores smoothly in the normal videos demonstrating superior performance compared to the other two models.
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