Abstract

We provide the following materials in the appendix:

* A full broader impact statement (Section A)

e Details about our model architecture (Section B)

* Details about how we provide video data into the model,
including how we align the modalities and perform the
masking (Section C

Details about how we adapted our model to downstream
tasks (Section D)

Details about how we collected data (Section E)

Additional experiments (Section F)

A. Broader Impact Statement

In this paper, we have presented a model for learning
multimodal neural script knowledge, through incorporation

of audio as a first-class citizen alongside text and video frames.

We argue that academic study of this learning paradigm is
important, in part because it relates to how we as humans
understand the world. We as humans process situations by
perceiving through multiple modalities and interpreting the
result holistically.

At the same time, the work and methodology that we
outlined risks dual use. Like other large machine learning
systems pretrained on web data, our system may reproduce
harmful social biases present in its training data. While
a variety of past work has studied risks of language-only
pretraining [127, 14, 7, 61], the video-centric pretraining
that we explore in our work might have different benefits and
risks. We discuss these below, along with how we worked to
mitigate them through our work.

A.l. Privacy.

A significant risk with training on data at YouTube scale
is protecting user privacy. We took several proactive steps to
ensure this, that in turn build off prior work and community
norms [1, 84, 1:

a. We release only the video IDs for download, following
prior work [1, 84]. Thus, if a user deletes a video off of
YouTube, it becomes removed from YT-Temporal-1B as
well, giving content creators a right to opt out of all uses
of their videos.

b. Building off of past work [128], we directed our data
collection towards public and monetized channels. These
channels are identifiable insofar as they contain more
subscribers, and more videos. They include companies
that have official accounts, including journalism outlets
like the New York Times and Vox. They also include
individuals for whom making public YouTube videos
is their full time job. In either case, our use videos in
question for research purposes can be seen as fair use.

14

Accuracy (%)

Model Voice Image+Voice Image
© RESERVE-L 10.8 9.6 10.7
CLIP ViT-B/16 [92] 86.0

Table 6: Zero-shot person (face/voice) recognition accuracy
on VoxCeleb2 [87] and VGGFace2 [17], using different
modalities. While & RESERVE can perform person recogni-
tion from several modalities, its performance is much lower
than the recognition-optimized CLIP model in the image-to-
name setting. We hypothesize that this is due to a similarity
between this setting and CLIP’s pretraining data — news
articles often include celebrity images, paired with their
names.

Framing of privacy. Privacy is a nuanced topic with
many societally, culturally, and generationally-specific in-
terpretations. We took inspiration from Marwick and Boyd
[83]’s framework of networked privacy, which posits that
users posting public videos might encode private information
—enough so that their intended viewership (friends, possibly)
can catch the gist, but not enough so as to leak private details
like phone numbers to the world.

Through the lens of networked privacy, we see key dif-
ferences between studying videos on a moderated platform,
versus NLP work that trains models from the open web (e.g.
[29, 93, 16]). When YouTube users upload videos, they tend
to understand details of its privacy policy, beyond consenting
to it [65]. Likewise, YouTubers typically upload their own
videos [102]; the platform deters users from re-posting other
users’ content. These factors differ from text on the open
web. Today, ‘data brokers’ post private details (like phone
numbers) to the web for profit [25]; concerningly, a study
on language models suggests that models are vulnerable at
memorizing this private information [18].

It is worth examining our research through other framings
of privacy as well. For example, internet platforms profit
off of user data, whereas users do not share equally in these
profits [37]. For this, and for the other reasons mentioned,
we aim to release our model only for research-based use.

A.1.1 Empirical study: can & RESERVE identify indi-
vidual celebrities?

Inspired by work studying language model memorization
of private information [18], we wish to empirically probe
© RESERVE’s ability to recognize individuals. Our goal
during model development was not to optimize for this
ability. Instead, our goal was to study models for multimodal
script knowledge (what people might be doing in a situation
over time, and why) instead of long-tailed visual recognition
(including who those individuals are). These goals might

trade off — for instance, our training data only has individuals’
names when they are mentioned in ASR subtitles, a pairing
that might be significantly noisier than images and text on
the open web.

We study this capacity on the VoxCeleb2 and VGGFace2
datasets [87, 17], where we created a test set of 120 celebrities,
with 100 samples of each. We study these datasets not to
promote them, but to establish a conservative upper-bound
for the capacity of a model to recognize non-celebrities. We
hypothesize that if ® RESERVE struggles to select the right
celebrity out of 120 predefined options, it would struggle
much more at identifying random people (where the set of
candidate names is much greater). We test this hypothesis
over three zero-shot settings:

1. Voice to name. Given an audio clip sampled for a
celebrity, we encode it with our model’s audio encoder.
We provide our model’s joint encoder the text ‘the sound
of MASK’, followed by the encoded audio. A blank image
is provided. We extract the representation on top of the
MASK, and choose the most similar celebrity name.

d

Image-+voice to name. Here, we adopt the same format
as ‘Audio to name,” except we additionally encode an
image of the celebrity’s face in question.

Image to name. Here, ® RESERVE encodes an image
of the celebrity in question, and we provide it with text ‘A
picture of MASK.” No audio is provided. Using our model’s
joint encoder, we select the closest encoded celebrity
name, out of all options.

We use this format to compare to a CLIP model, which
was trained on web images with captions [92]. For the
CLIP comparison, we use it to encode each image, and
for all considered celebrity names, the sentence ‘A picture
of ${name}’. We choose the closest encoded sentence to
the encoded image.

g

We show our results in Table 6. In all modes, our model
is less than 11% accurate at recognizing celebrities. Curi-
ously, the accuracy drops given both the image and the voice,
suggesting that the way we fused a celebrity’s image and
voice together might be outside the model’s training distribu-
tion. These results are significantly lower than CLIP’s 86%
accuracy at classifying a person from their image.

In Figure 6, we investigate more into which celebrities
our model is best at recognizing. Only a few celebrities are
reliably classified; these tend to be very famous celebrities
like Oprah Winfrey and Justin Bieber. Several sports players
are recognized well (including Lebron James and Roger
Federer), which could imply that our model learned their
identities from watching sports replays or commentary. Most
other celebrities are hardly recognized, whereas CLIP does
well across the board.

Results summary. Together, these results show that
while models like CLIP focus on encyclopedic knowledge

15

Oprah Winfrey
Justin Bieber
Jermaine Dupri
LeBron James
Roger Federer
Tiger Woods
Charlie Sheen
Britney Spears
Russell Brand
Jennifer Love Hewitt
Cristiano Ronaldo
Chris Christie

Triple H
Kobe Bryant

Fan Bingbing

Aaron Rodgers
Emmanuel Adebayor
Mario Lopez

Diane Sawyer

David Beckham
Jordan Henderson
Joel Lundquist

Amy Adams

William Scott

Ajay Devgan
Jenna Dewan
Terence Howard
Dwayne Johnson
Jamie Oliver

Jack Bauer
Darius Rucker
Fawad Afzal Khan
Bill Bailey

Debbie Ryan
Aditya Roy Kapur
Elizabeth Shannon
Kyra Sedgwick
Jose Mourinho
Bob Iger

Luke Hemsworth
Russell Crowe

b Ford

Chrissy Teigen
Brie Bella

John Travolta
Karen Gillan
Mohamed Farah
Robert Downey Jr.
Song Hye-kyo
Eric Church
Ashley Tisdale

TJ Miller

Maria Canals Barrera
Beau Bridges
Marouane Fellaini
B. J. Novak
Vincent Perez

rey Songz
Maurice Benard
Michael Grylls
Mike Brey

Tico Torres
Tamera Mowry
Mfda

Nick Offerman

Andy Roddick
Ashton Kutcher
Shane Filan

Patrick Harris

Patrick Monahan
Penn Dayton Badgley
Sebastien Pifera
Ricardo Antonio Chavira
Rick Gervais
Sebastian Stan
Sasha Alexander

Robert Pattison
Malin Akerman

Katie Perry

Lisa Hanna

Ewan McGregor
Heather Elizabeth Morris
Harry Connick, Jr.
Goran Visnjic

Gisele Bundchen
erard Pique

Georges St-Pierre
Carson Daly

Eric Close

Lily Aldridge

Rossum

Catherine Jenkins
Elisabeth Hasselbeck

Channing Tatum
David Spade
Cheryl Cole

lan McKellen
Jared Padalecki
Jason Blum
Jennifer Hawkins
Leonardo DiCaprio
Beth Behrs

Laura Vandervoort
Katie Price

Dan Feuerriegel
Kate Segal

Kamal Haasan
Billy Ray Cyrus
Jonathan Meyers
Jon Bon Jovi
Jo-Wilfried Tsonga
Adam Rodredguez
Jesse J. White
Jennifer Nettles
Candace Cameron-Bure
Jim Parsons

CLIP accuracy (%)
mmm Reserve accuracy (%)

25 50

Accuracy

75 100

o

Figure 6: VoxCeleb2 results per-celebrity, comparing
© RESERVE-L versus CLIP ViT-B/32 in the same ‘image-
text’ setting. Our model reliably recognizes A-list celebrities
like Oprah Winfrey, very famous musicians (Justin Bieber)
and sports players (LeBron James). However, it struggles
on every other celebrity, particularly compared with CLIP.
This suggests that our model primarily learns semantic as
opposed to recognition-level encyclopedic knowledge.

that results in strong zero-shot person recongition accuracy,
® RESERVE is not as effective as other models in memoriz-
ing particular celebrities— and, thus, perhaps not as effective
as memorizing particular non-celebrities. These results sug-
gest that ® RESERVE’s objectives and data might make it
less of a concern to release privacy-wise, versus models
trained on web images with captions.

As the rest of the paper emphasizes however, & RESERVE
performs well on tasks with temporal understanding and com-
monsense reasoning as the primary goal. On a broader level,
these results suggest that it is possible to learn strong models
about temporal reasoning without person-level memorization,
though more work is needed.

A.2. Biases in (pre)training data.

The ‘knowledge’ that our model learns should be viewed
as situated within YouTube [67], which has numerous biases
(that we will discuss next). Past work has made similar
observations for language model pretraining on the open
web[7]. One of the root causes of such bias is learning
objectives that encourage memorization of surface level
cooccurences, rather than truly causal factors [56, 8, 1.
Though it is possible that in the very long term, a paradigm
of grounded learning might resolve some of these issues, the
objectives in this work still likely reify biases that exist in the
YouTube data.

Platform biases. Unlike many other pretraining efforts,
that scrape data from the open internet (e.g. [93, 16, 92])
which directly leads to toxic biases (e.g. [42, 32, 11]); we
trained our model on YouTube, which is a moderated platform
[101]. Though the content moderation might perhaps reduce
overtly ‘toxic’ content, social media platforms like YouTube
still contain harmful microagressions [15], and alt-lite to
alt-right content [95]. Additionally, it should be mentioned
that the content moderation on YouTube disproportionately
filters out minoritized voices [44]. Thus, despite us not
using any word-based ‘blocklist,” our model’s pretraining
data is still biased [32]. Even without videos being explicitly
removed, the ‘“YouTube algorithm’ incentivizes the produc-
tion of certain types of content over others [12,]; e.g.
people’s roles in YouTube videos tend to be highly gendered
[86], which might bias situation understanding [133].

Bias amplification. In this work, we pretrained a model
primarily on ASR text, which is itself produced by another
model. The automatic captions in YouTube are known
to suffer from gender bias [107], which our model (like
neural models generally) might in turn amplify [133]. The
transcriptions on YouTube are also likely poor at handling
important identity markers, like pronouns. Already, text-only
models like BERT struggle with pronouns like they/them
and zi/zir; our reliance on ASR text makes our corpus
likely worse in this regard [28]. While past work, namely
MERLOT [128], ‘cleaned’ this ASR text — through another

16

large language model — we opted not to do so for this work
due to computational expense. Though in that work, the
ASR-denoisification was found to boost performance in VCR,
it seems unlikely that it would solve this core issue of model
bias.

A.3. Dual use.

Learning connections between video, audio, and text —
though an important area of study as we have argued — can
be used for undesirable applications, beyond what we have
outlined under ‘biases.” We outline and discuss a few below.

Generating fake content. A concern for pretrained
models is that they can generate fake content, that could
be used by ‘bad’ actors for their ends [127]. It should be
noted that our model cannot explicitly ‘generate’ text, audio,
or vision in a direct sense. Nonetheless, however, it is
possible that a finetuned or expanded version of this model
could be used for that purpose — and that our model would
be more helpful to such an actor versus them training their
own (perhaps larger) model from scratch.

Surveillance. Our model might contain representations
that enable it to be used in surveillance applications. As
we note in Appendix A.1.1, our model’s low performance
on person recognition suggests that it might perform poorly
recognition-focused applications. Still, one possibility is that
a neural script knowledge could ‘summarize’ surveillance
videos in some form (like identifying an activity of interest),
without identifying the person(s).

We suspect (but cannot definitively prove) that the report-
ing bias of the YouTube data that it was trained on might make
it poor for such a surveillance-focused task [50]. Namely,
most surveillance videos are sparse in nature — finding an
activity of interest is like finding a ‘needle in a haystack’
[91]. Though, some surveillance videos are inevitably posted
on YouTube and then captioned, these disproportionately
contain interesting events (like somebody’s car crashing into
a house). It is not clear whether our system could be eas-
ily adapted to such a sparse problem; the amount of work
required suggests that it might be out-of-scope at least for
low-skill actors. On the other hand, this broad research
agenda, and perhaps all of computer vision for that matter,
might enable large actors to do just that [134]; which might
not be addressable through purely technical solutions [52].

Harmful outcomes if deployed. Beyond the biases that
our system possesses, some applications of our system — if
deployed in production — could cause harm, particularly to
groups already harmed by Al systems. Of note, linking
someone’s voice with their appearance is not always a good
thing [94]. Likely some of the key features that our model
learns — though we did not teach it this explicitly — involve rec-
ognizing gender, and this is harmful especially to transgender
individuals [55].

A.4. Energy consumption.

Our model cost a lot amount of energy to pretrain [103];
roughly 3 weeks of time on a TPU v3-512. The total carbon
footprint of our work was a net 8.23 tons of CO5 equivalent,
which is roughly 4.5% of the emissions of a jet plane flying
round-trip from San Francisco to New York.°

At the same time, it is possible that our model could
save energy overall, when shared with researchers who build
off of our system. Indeed, ® RESERVE-B uses less energy
than MERLOT [128] (due to a smaller vision backbone, and
smaller image sizes), MERLOT in turn is more efficient than
past work which used expensive detector-based backbones
(e.g. [106, 21,]), that are made more expensive because
some of their computational primitives (like non-maximum
suppression) are difficult to make efficient on-device.

A.5. Synthesis.

With these risks in mind, we release our video IDs, as well
as ® RESERVE’s checkpoints, exclusively for research use.
We believe that at this point in time, we as a field lack full
knowledge of the privacy, bias, and dual-use risks of video-
based models — though, we hope that our analysis in this
section provides a good starting point. For instance, while
the objectives that we have studied were designed to promote
learning general neural script knowledge above encyclopedic
memorization, they have not yet been tested in all possible
cases. By opening our models to the research community,
we hope to promote fundamental work in uncovering both
promising aspects of these systems, alongside examining
their risks. We hope to contribute to these lines of research
as well.

B. Model implementation details

In this section, we discuss at a more in-depth, technical
level, how we implement certain aspects of ® RESERVE,
and other details (like its runtime in FLOPs). We discuss
our use of rotary position encodings (B.1), how we set the
sequence lengths for the model (B.2), measure the model’s
computational footprint (B.3), list hyperparameters (B.4),
and discuss several training strategies (B.5.

B.1. Rotary position encoding

We use a rotary position encoding to model the relative
location of input sequences [104, 10]. We chose this primarily

2CO2 Calculation. It is also important to consider the location where
these TPUs are located, as the renewables portion at each datacenter is
not equal [88]. Our TPUs were in the ‘europe-west4’ region, which uses
on average 60% carbon-free energy, and a Grid Carbon intensity of 0.410
kgCO2eq / kWh. A single TPU v3 processor (with 8 cores over 2 chips)
has a power average of 283 W, so after performing the math from [88], our
training cost 20,000 kWh. This gives us a net 8.23 tons of CO2 equivalent.
It should be mentioned that this figure only covers the electricity usage given
the chips (and the datacenter), not the raw materials involved in making
these chips (which is significant [111]).

17

because we did not want to use absolute (additive) position
embeddings, which would have to be added to the inputs of
each encoder, and possibly at multiple levels in the hierarchy
(e.g. for the joint encoder, the video segment index ¢ would
be needed as well).

The rotary encoding uses no parameters, and instead uses
a kernel trick to allow the model to recover relative distances
between key and query elements in a Transformer’s attention
head. This can be seen as ‘rotating’ pairs of elements; we
apply the rotation to only the first half of each 64-dimensional
head, and the second half is kept as is.

Multidimensional coordinates. We treat each token as
having a 4-dimensional position of (h, w, ¢, t), corresponding
to the h,w coordinates in the image, the position £ in the
text-sequence, and the segment index ¢. If a dimension
is irrelevant to a modality (like h,w for text), we set it to
0. Thus, for our various encoders, we use the following
coordinate schemes:

a. Video Frame Encoder (ViT): just the h, w coordinates
of the image; so (h,w, 0, 0).

b. Audio Encoder: Only the 1-D position ¢ of the patch in
the spectrogram: (0, 0, ¢, 0).

c. Text Span Encoder: Only the 1-D position ¢ of the token
in the input: (0,0, ¢,0).

d. Joint encoder: Here, we use all coordinates. Inputs from
the video frame encoder have coordinates (h,w, 0, t),
where t is their segment index. The text and (pooled)
audio inputs are merged, and they each have coordinates
(0,0,¢,t), where £ here is the absolute position in the
entire sequence (across segments).

As part of our implementation, we normalize the rotary
coordinates. h,w are scaled to be in the range [—1/2,1/2],
such that text is implicitly ‘in the center’ of the image.
Likewise, ¢ and ¢ are scaled to be in the range of [0, 1]. The
positions are used to compute relative distances, by using a
kernel trick to rotate coordinates in the keys and values of
each dj,-sized Transformer attention head.

B.2. Sequence lengths

We briefly remark on the sequence lengths used by parts
of the model.

a. Video Frame Encoder (ViT): Most YouTube videos are
widescreen (16x9). We thus used a widescreen resolution
for our video frame encoder. It takes in patches of size
16x16, and we used a layout of 12 patches (in height)
by 20 patches (in width). This corresponds to 192x320.
Among other factors that are important are ensuring that
TPUs do not execessively pad the sequence length [130].
The sequence length is 241 in this case, as there is a
CLS token, and it gets padded to 256.

Attention pooling. As we note in the main text, after-

wards we apply attention pooling in a 2x2 grid (ignor-
ing the CLS token here). Similar to Transformer-style
query,key,value attention [1 10], the query is the average
of the vectors in the 2x2 grid; the keys and values are
learned projections of the vectors. This gives us a H/32
by W/32 grid for the joint encoder (6 x 10).

b. Audio Encoder. Our model independently encodes each

1.6 second of audio (a segment has three such ‘subseg-
ments’). We do this through spectrograms. Each window
involves 1536 samples at a sample rate of 22500 Hz,
and there are 588 samples ‘hops’ between windows. We
chose these hyperparameters largely around efficiency.
We found that the Discrete Fourier Transform is fastest
if the window size is close to a multiple of 2. We used
a small number of mel spectrogram bins (64) because
we found that at that threshold, we could reconstruct the
original sequence at an acceptable level using the Griffin-
Lim algorithm, [53] which itself might be a lower bound
on quality as neural methods trained for this purpose
have been shown to do better [115].
In our implementation, we compute the spectrogram for
an entire video segment (5 seconds) at once; this is of
size 64 mel bins by 192 windows. During pretraining,
we perform what is effectively a ‘random crop’ over
the spectrogram: we extract three sequential 64260 sub-
spectrograms, for each audio subsegment. We constrain
them to not overlap, which means that 12 (random)
windows are held out.

We note that our Audio Encoder AST is quite different
from the one proposed by [47]. Though it operates
over spectrograms, we opted for a linear ‘1-dimensional’
layout rather than a two-dimensional (image-like) one.
We also did not pretrain our audio encoder on any su-
pervised data (they used ImageNet and found, perhaps
surprisingly, that it helped initialize the model). We used
a patch size of 64 mel bins by 2 windows; the resulting
(1D) sequence is of size 30. After adding a CLS token,
the result is a sequence of length 31.
As we note in the main text, we apply attention pooling
afterwards (for all elements except the CLS token), pooling
by a factor of five to resize the length-30 sequence to a
length of 6 ‘audio tokens.’

c. Text Span Encoder: We operate on spans that are at most
of length 15, with an additional CLS token. Its length is
thus 16.

d. Jointencoder. Let L be the number of text or pooled audio
tokens given to the model per segment, on average; we set
L=20. LetT be the number of video segments. Then, the
joint model’s sequence lengthis T'x (L+W/32x H/32).
Our total sequence length was thus 640.

To better adapt our model to downstream tasks — partic-
ularly single-image tasks like VCR [126], where past work

18

GFlops, from VCR
Image Joint Q—AR
Model Encoder Encoder Total Acc(%)
UNITER-Base[21] 1766 28 | 1794 58.2
UNITER-Large[2 1] 1767 99 | 1867 62.8
MERLOT [128] 236 67 | 303 65.1
© RESERVE-B 99 46 146 62.6
© RESERVE-L 176 165 341 71.5

Table 7: Efficiency metrics of our model versus others,
measured in terms of (giga) floating point operations required
to process a single image, question, and answer candidate
on VCR. We compare with the overall VCR performance on
the combined Q—AR metric. Our & RESERVE family of
models are significantly more efficient than prior work, with
© RESERVE-L being roughly on par with MERLOT [128]
in terms of FLOPs, yet improving accuracy by over 6%.

tends to use a resolution much higher than 192x320, after
pretraining, we performed FixRes pretraining (for one epoch
on ® RESERVE-B, and one half epoch on & RESERVE-L
[108].1° Here, we trained the model on larger images — si-
multaneously on 288x512 widescreen images (18 patches
by 32 patches), and on 384x384 square images (24 patches
on each side). The joint encoder, correspondingly, uses a
sequence length of 1312.

During 10 epochs of pretraining, we used a cosine decay
of the learning rate down to 0.02 its maximum. During
FixRes pretraining afterwards, we warmed up the learning
rate to 0.02x its peak, over the first 1/5th of an epoch, and
afterwards used a cosine schedule to anneal it towards 0.

B.3. Efficiency metrics of our model

In Table 7, we report efficiency metrics of ® RESERVE,
versus others. We calculate these metrics in the context of
scoring a single VCR question and answer candidate. This
requires encoding one image, and using 128 tokens for each
question and answer combined (for all models). We compare
against a UNITER [21], which is a representative Visual-
BERT style model, along with MERLOT [128]. Our models
are far more efficient in terms of FLOPs, with & RESERVE-L
being roughly on par with MERLOT, yet outperforming it by
6% in terms of VCR accuracy. We discuss key differences
below:

a. UNITER. We note that UNITER, like other VisualBERT
models, uses a supervised object detection backbone [5].
This processes images using a ResNet 101 model [57],
at a resolution of 600x800; the final ResNet ‘C4’ block

10We had intended to do a full epoch for & RESERVE-L, but our job got
preempted, and the loss seemed to have already converged.

is applied densely over the entire image to obtain object-
detection potentials everywhere in the image. Both
factors greatly increase the FLOPs count.

When computing UNITER’s FLOPs count, we exclude
operations like non-max suppression, which is an opera-
tion that is difficult to implement (and thus whose FLOP
count might vary significantly depending on implemen-
tation). Our FLOPs count is thus a lower-bound. 36
detection regions are extracted, which is why the ‘joint
encoder’ for UNITER is smaller than the equivalents for
MERLOT and & RESERVE.

b. MERLOT. This model has two key differences versus
our & RESERVE. First, it uses a larger image resolution
for VCR: 384x704, versus our 288x512. Second, it uses
a hybrid ViT-ResNet50 backbone for encoding images.
The backbone here is lighter weight than the object
detection backbone of UNITER (in particular, the final
‘C4’ block is removed), and thus, as shown in Table 7,
though it uses more FLOPs than does our & RESERVE-L,
it uses far fewer FLOPs than UNITER.

We choose flops as our primary comparison metric as
past work shows that it is one of the key factors in model
scaling [06, 34]. Parameters are arguably more fungible.
For instance, in text-only representation learning, ALBERT
[72] demonstrates that it is possible to tie parameters together
at all layers of a BERT-like transformer, reducing parameters
by an order of magnitude (while not modifying compute),
with a minimal performance drop. We did not do this for
this work, as we wanted to use a more ‘vanilla’ Transformer
architecture; however, it suggests that representation learning
models with hundreds of millions of parameters might be
FLOPs bound as opposed to parameter-bound.

Nonetheless, UNITER-Base has 154 million parameters,
though some are frozen (86 million from their Transformer,
23 million from the word embedding layer, and then 44
million from their object detector [5]). UNITER-Large
has 378 million parameters (303 from their Transformer, 31
million from word embeddings, and 44 million from the same
object detector. Meanwhile, MERLOT has 223M parameters.
Versus our & RESERVE-B, 14 million extra parameters are
due to a larger vocabulary, and 10 million parameters are
due to a ResNet50 encoder — but these parameters have a
disproportionate impact in FLOPs count.

B.4. Full model hyperparameters

In Table 8, we present full hyperparameters for our model.

Among other details, we used AdamW as our optimizer, with
B2 = 0.98 and € = 1le — 6. We increased the learning rate
linearly to its peak value (4e-4 for ® RESERVE-B, 3e-4 for
© RESERVE-L) over 3750 steps (Q%th of an epoch). Our
number of warmup steps is lower than many other pretraining
work; we note that all of our contrastive objectives involve

19

Base Large
Sample rate 22050 Hz
& FFT hop length 588 samples
g FFT window size 1536
Z Mel bins 64

Subsegment length 60 hops, (=1.6 sec)
Patch size 64 mels x 2hops
Pooling ratio 5
Final size 6 tokens
ViT patch size 16

& Pretraining size 192 x 320

£ Res-adaptation size 288 %512 and 384 x384
Pooling window 2x2

< Max. span length 15

& Mean span length 5.5
N video segments 16

video segment groups
Pretraining seq. length

1zes

Joint s

Res-adapted seq. length

2 (each with 8 segments)
640 (160 text&pooled audio;
480 pooled vision)
1312 (160 text&pooled
audio; 1152 pooled vision)

Videos 1024

& # Frames (for matching) 16384

;: Masking rate 25% (of subsegments)

& Text spans 49152
Audio spans 49152
Hidden size 768 1024
Num attention heads 12 16

g Size per head 64

2 Rotary size (per head) 32

; Vision num layers 12 24
Audio num layers 12
Text-span num layers 4
Joint num layers 12 24
Peak learning rate 4e-4 3e-4
Weight decay 0.1

5 AdamW (5 0.98

E AdamW ¢ le-6

& Warmup steps 3750
Training steps 750k (+ 75k for res.

adaptation)

Training epochs 10 (+ 1 for res. adaptation)
o Maximum scale 100.0

Pretraining compute

TPU v3-512 TPU v3-512
for 16 days for 5 days

Table 8: Architecture details, and pretraining hyperparame-

ters, for both model sizes.

Base Large
Batch Size 32
Training Epochs 5
O Image Size 288x512

Learning Rates Tried

le-5, 2e-5, 3e-5 8e-6, le-5, 1.2e-5

Learning Rate 2e-5 8e-6
Batch Size 32

- Training Epochs 3

< Image Size 288x512

& Learning Rates Tried 5e-6, le-5 5e-6, le-5
Learning Rate Se-6

- Batch Size 64

8 Training Epochs 15

S Image Size 288%512

é’ Learning Rate le-5 Se-6
Data Augmentation From [2]

Table 9: Hyperparameters for finetuning on downstream
tasks. Note that for Kinetics-600, we tried to mimic VATT’s
setup [2], including adopting their training-epoch regime and
their data augmentation strategies. Our data augmentation
strategies were much simpler for VCR and TVQA (random
cropping, and for VCR sometimes horizontally flipping the
image); we suspect that our VCR/TVQA results could be
made higher if data augmentation was further explored.

learning a o parameter, which functions as a secondary
‘warmup.’

We did not use gradient clipping. We trained and evaluated
in 16-bit bfloat16 precision wherever we could — casting all
gradients to that precision as well, and saving the AdamW
running mean and variance to be 16-bit as well. A few
times during pretraining ® RESERVE-L, we found that some
values in gradients would be NaN. We addressed this by
always setting NaN values to be 0. This seemed to address
the symptoms of training instability — though sometimes the
training loss would spike to roughly around the same loss as
random initialization, it always converged back to slightly
better than it was before the spike. We are not currently sure
why this happens.

B.5. Speed improvements during pretraining

We made several high-level algorithmic and engineer-
ing implementations to our implementation, which made
pretraining run faster, and that we discuss here.

Duplicated video copies. As mentioned in the main text,
we create two copies per each video — allowing us to learn
separately how to handle audio as an input as well as how
to learn from audio. We chose this in part because copying
a video does not increase the total compute requried by a
factor of two. Instead:

1. We use the image and audio encoders, to encode the

20

underlying video frames and audio clips only once (for
the two video copies), and then duplicate the encod-
ings; this is far more efficient than encoding them both
separately from scratch.

2. For the two video copies, we sampled two disjoint sets
of masks (for which audio and text subsegments are
replaced with MASK) at a 25% rate. This increases the
pool of negative samples for contrastive learning, again
increasing training efficiency.

Reducing memory usage. The memory usage of our
Transformer implementation scales quadratically with se-
quence length, which could pose a problem since we operate
on sequences of videos. We split the video into two groups
of 8 segments, and encode each group separately by the joint
encoder.

Vectorization. We vectorize all joint transformer inputs
together into a single call. During this vectorization, we
also encode the transcript (for the transcript-frame matching
objective).

We note that this vectorization is incompatible with the
Mask LM variant proposed by MERLOT [128]. In this
variant, which the authors called ‘attention masking,” two
transformer calls must happen sequentially — first, a language
only encoder must encode the inputs and mark down (what is
presumably) visually-grounded tokens; second, these tokens
are masked for the joint encoder. We found that such an
objective was unnecessary when pretraining under our con-
trastive span approach, which in turn enabled more efficient
pretraining.

We discuss the exact pretraining data formatting technique
that we used in the next section.

C. Pretraining Data Formatting:
and masking

alignment

In this section, we discuss how we turn a video) into a
(masked) list of segments {s;} for pretraining.

Recall that each segment contains a video frame vy, ASR
tokens w, and audio a;. We generate the list of segments by
iterating through the video with a 5-second sliding window. !

Audio and text subsegments for masking. We want
audio to be used in part as a rarget for contrastive prediction.
However, during early exploration we found that 5 seconds
of audio could correspond to many BPE tokens; roughly
15 on average. We use past work in language modeling
as a guide [64, 93] and wanted an average span length of
around 5 tokens. To get this, we split each audio segment

1Sometimes there are long ‘pauses’ in videos where nothing gets said.
When this happens — if two segments in a row have fewer than 8 BPE tokens
— we merge them 90% of the time, in effect ‘fast-forwarding’ the audio and
still extracting a frame from the middle. We do this at most twice, so the
total length is at most 15 seconds here (in effect, a ‘playback’ rate of 1x, 2x,
or 3x). In roughly 90% of cases, the segments are 5 seconds of length.

into three equal subsegments, each with a duration of 1.66
seconds. We can then perform masked language modeling
at the aligned subsegment level, where we mask out the text
corresponding to an audio subsegment, and have the model
(contrastively) predict the masked-out span of text, as well
as the corresponding span of audio. We use a masking rate
of 25%, which means that a quarter of the subsegments will
be corrupted and replaced by a MASK token.

In theory, splitting the videos into (masked) segments
ought to be straightforward. However, the key challenge that
we ran into is that the YouTube caption timing information
is unreliable. Problems might arise when we perform
pretraining with both audio and text, on misaligned data.
Suppose the model is given audio in segment s;_; that ends
with somebody saying the word ‘pasta.” If the alignment
between audio and text is off, the model might be able to
cheat the desired task by simply predicting the word ‘pasta’
for segment s; — thereby turning the challenging masked-
prediction task into an easier speech recognition task; we
discuss this in more detail in Appendix C.1.

One way of addressing the timing issue would be to run
our own ASR model over all videos, but we chose not to
do this due to computational expense. Instead, we adopted
two complementary strategies. First, we trained a lighweight
regressor to refine the timing information (C.2); second, we
mask audio and text conservatively, to minimize alignment
errors (C.3). Finally, we discuss how we combine everything
efficiently (in a vectorized way) in C.4.

C.1. YouTube Caption Timings

YouTube provides automatically generated captions for
accessibility purposes, which include timing information on
each word. In the subtitle encoding that we used (vtt), each
word w contains a single timestamp ¢ which corresponds
to when the word should flash on-screen. The timings are
mostly accurate, but we found two key issues:

a. First, they show up on average roughly 0.1 seconds
before each word is spoken, which we suspect might be
for usability purposes (perhaps so that while the viewer
is reading the caption, they hear the word).

b. Second, with a single timestamp ¢ for each word, it is
difficult to infer about pauses. For each word w, we
can use its timestamp ¢, and the timestamps of adjacent
words, to loosely infer an interval [t, ¢] around when
the word is said. However, the interval is not tight. We
can only infer that the word is being actively spoken for
some subinterval [ts, t.] such that ¢/, < t, <t, < ¢,.12
This can lead to high absolute error (in terms of a
difference between timesteps), when pauses occur. For

2Note that this is compounded with the first problem, the ground truth
interval [ts, te] might not be fully contained in the provided interval [t/]
due to ‘captions being shown before audio’, the error here is typically small

though (0.1 seconds).

21

example, suppose a speaker says a word, and then pauses.
The interval given by the subtitles, [t.,t.], might be

rather large (possibly a few seconds), even though the
actual word was spoken for a fraction of that time.

C.2. Refining timing information

We trained a simple multilayer perceptron regressor to
correct the timing information of YouTube transcripts. For
data, we used 2000 videos with transcripts from Y T-Temporal-
180M, and also used Google Cloud’s (highest quality, paid)
ASR service to transcribe them. After aligning the words
for these transcripts, this gave us tuples of the YouTube
ASR word w, its provided interval [t/,¢.], and the ‘ground
truth’ interval [ts,¢.]."> Our modeling objective was then
to predict the desired offsets with respect to the provided
interval: §; = ts — t, and §, = t. — t.. We took a feature
based approach.

For each input (w, t’,, t.), we used as features:

i. the length of w in characters,
ii. the length of w in BPE tokens,

iii. whether w is uppercase or not,

iv. the number of vowels in w,

v. the number of punctuation characters in w,
vi. the value of t, — t..

We provided these features as input to the model, as well as
the corresponding features for the next word, and the previous
word. We z-normalized all features and used a two-layer
multilayer perceptron, with a hidden size of 32 and RELU
activations. We used a tanh activation at the end to bound
the regression. The final predictions for ds (analogously for
d.) were then given by the following equation:

ds = ctanh(w - h+by) + by 3)
where h is the hidden state, and with learnable parameters c,
w, by, and by. The learned bounds mean that, no matter what
the input, the model will never predict an offset of above
¢ + bs (of which it learned for both parameters ¢ ~ 0.2 and
by ~ 0.11, so the offsets can never be above 0.3 seconds).
We trained our lightweight regression model using an L!
loss, and used it to correct the timing on all of the transcripts.

C.3. Handling worst-case scenarios in masking,
when alignment isn’t perfect

The regressor that we described reduces the average
timing error of a transcript, as a preprocessing step, but it is
not perfect. Thankfully, however, we find that most of the
remaining alignment errors are single words that are slightly
misaligned. For instance, for three words wy, w41, W42,

1B3BWhen matching YouTube ASR to Google Cloud’s ASR, we skipped
words without an ’exact-match’ alignment, as well as words that were over
0.25 seconds apart (i.e., where either 65 > 0.25 or § > 0.25

[}
(]
IS
o
&
9 -
2
>
o
2 W W W W W= W3 W= Wz Ws3 W4 We Ws
= |mechanism|| andthen || your whole you in board and || wave using wave as well the best on your staying as long as
L lin your back|| you'rein ||core areato position to || yourself |tthe power of| thing to do bottom turn|icrouched for|| possible
o your hips get force the || back down the is really in focus on
© and the focus

ay (4713 Q3 Qx Qz Qx (0731 (053] Qs Qu Qs Qs
© |mechanism||ck and then|| and your n position || boardand || the wave the wave as well the best focus on || on stayin long as
S |inyourba—|| yourein || whole core to force the|| yourself using the thing to do your bottom|(crouched for|| possible
@© your hips || area to get back down t|| power of is really turn in focus as

you =

The audio has alignment errors versus the aligned ASR text. So...

1. when predicting audio and text,
first donate tokens to the predicted
text span, from given text spans

wy ws
mechanism MAS K MASK your whole
eee | inyour coreareato| °°°
vour || TEXT ||AUDIOf>rer
(T QA
back and ||ck and then

then you're || you're in

in your hips || your hips
and

2. when predicting text (from audio
input), sandwich the prediction
between text inputs

Qs Wz MASK Wa Qs
the wave as well on your on staying
TEXT bottom turn|crouched for ***°
in focus on as
Ws3
the best
thing to do
is really
focus

Figure 7: An overview of our masking strategy for dealing with sequences of video frames, ASR, and audio. We have noisy
timing information for each word, so we can align the ASR text with audio spans of 1.6 seconds each, using three sub-segments
of audio and text for each video frame. However, there exist alignment errors between the ASR and audio sub-segments —
certain words (and sub-words) have phonemes that are are in the wrong segment (like ‘back’ in w; ; is only partially said in
the first sub-segment; the ‘k’ sound is said in the second. When audio is only a target, we address these by ‘donating’ tokens to
predicted spans. When audio is only provided as input, we address this by sandwiching ‘mask’ tokens between text input (so

alignment does not ‘bleed’ over).

the audio corresponding to the time interval around w; might
contain sound from wy4; being spoken, but rarely w;o. We
suspect this is primarily due to the difficulty inferring pauses:
by definition, no other word can be said in a pause, so the
errors are local.

We present a high level approach for masking audio and
text, that in turn addresses these alignment issues (making it
difficult for models to cheat). A diagram is in Figure 7.

Recall that in our framework, we only either go from
‘vision and text — text and audio’ (VT—TA), or, ‘vision, text,
and audio — text’ (VTA—T). One of the reasons we did this
is to avoid allowing a model to cheat by performing speaker
identification (or even ‘microphone identification’), which
might be feasible if audio was given to the joint model as
input. We can handle the two cases separately:

a. Vision and text — text and audio (VT—TA). Here, the
text as input (to the joint encoder) might overlap with the
audio we are trying to predict. Our solution here is thus

22

to donate nearby tokens from the predicted span, to the
input. Let the span that we are trying to predict (and that
we will ‘mask out’) have a start time of ¢ and an ending
time of ¢.. If the final token in the previous text span, if
any, has a timestamp of greater than ¢;—0.125, we move
it to the predicted span; likewise, if the first token in the
next text span has a timestamp of less than ¢.+0.125, we
move it to the predicted span as well.

b. Vision, text, and audio — text (VTA—T). In this pre-

diction task, models are given information from all
modalities as input, and must predict masked-out text
spans. Note that models are only given a single ‘speech’
modality — either text, or audio — at each timestep. What
this means is that we can carefully choose which in-
put subsegments to turn into ‘audio subsegments,” and
which to turn into ‘text subsegments.” Our strategy is,
given a masked out subsegment, to turn 80% of adjacent
subsegments into ‘text subsegments.’

We give an illustration of this in Figure 7, part 2. Here
the word ‘focus’ is part of a4,1 but also ws 3). This
might make ws 3) overly easy to predict, if we gave the
model a4, as input. Our solution is thus to give the
model text from ws,2) and from w4 1) as input; we are
guaranteed that there is no misalignment overlap here
between input and prediction spans. All of the other
subsegments (not adjacent to one of the 25% that we
mask out) will be provided as audio.

C.4. Putting it all together, along with web text

Finally, we discuss how we combine the various masking
approaches into the prediction tasks outlined in the main text.

Each video has NV = 16 video segments, and three sub-
segments of audio or text spans per segment. We consider
two sub-problems for this video sequence:

i. in VT—TA, vision and text are provided as input, and the
model must predict masked-out text and audio. These
are done on top of separately-encoded MASK tokens and
MASKAUDIO tokens, to enable the model to learn different
predictions for each modality over two separate trans-
former ‘columns.’

ii. InVTA—T, vision, text and audio are provided as input, and
models must predict masked-out text. Here, we use the
term ‘predict’ as a shorthand for our contrastive objective —
in which a model must match a context (a jointly-encoded
MASK) to the exact missing span in question, where many
negative contexts and spans are provided.

We use a masking rate of 25% for audio and text sub-
segments, and there are 3 subsegments per segment. This
means that a single video instance gives us 48 x 0.25=12
masked-out spans of text, for each of VT—TA and VTA—T,
so 24 in total (as we use disjoint masked-out subsegments).
Likewise, it gives us 12 masked-out spans of audio. If we
scaled these to the whole batch of 1024 videos, we would
have 12k audio span options and 24k text span options. This
might suffice, but scaling up the pool of candidates boosts
performance in a contrastive setting, as suggested from prior
work (e.g. [92]), and as our ablations (Table 1) support as
well. Thus, we do the following:

a. Text candidates. We scale up the text candidates by
simultaneously training the model on web text, from
The Pile [40]. The joint encoder — which can handle
pooled video, pooled audio, and BPE-encoded text — is
simultaneously given a sequence of web text, for each
video that we have. By performing the span-contrastive
objective with this piece of web text as well, we can
not only teach the model about written (as opposed to
spoken) language, but we can scale up the set of text
candidates as well.

Let each web-text sequence be of length L. We first divide
it into fake regions that ‘look like’ the text subsegments

in length. We do this by calculating the empirical length
distribution of the text subsegments, and then using
this (categorical) distribution to sample a sequence of
sub-segment lengths /1, ..., {x."* We clip the sampled
sequence, such that), ¢; = L.

Next, we mask the fake subsegments. During pretraining,
we use text sequences of length L = 800, but a model
sequence length of only 640. Because we are masking
spans and not individual tokens, the text sequences
‘shrink’ when we mask them. We extract exactly 38
masked-out spans, which corresponds to around 25% of
total text.

Finally, we combine the target spans that we took from
the webtext sequence, with the target spans from the
video. We note that sometimes — especially in a video —
text spans might be empty. Not every 1.6 second slice
of a video has someone speaking. We thus try to not
use these empty spans in our contrastive objective. For
each video (which is paired with text for implementation
reasons) we select the ‘best’ 48 text spans out of the
(38+24) options — penalizing empty spans, and choosing
spans from videos 4x as often.

These ‘best 48’ text spans, as well as the pooled contexts
that they were paired with, will be used in the contrastive
objective. Aggregating over the entire batch of 1024
videos (and 1024 web text sequences), this gives us 49152
text spans as candidates, for the all-pairs symmetric
softmax between text spans and contexts.

b. Audio candidates. For each video, we note that we have
exactly 12 pooled MASKAUDIO tokens, where the model
is trying to predict the corresponding audio span. One
option would be be to just use those 12 corresponding
audio spans as the targets, aggregate these over the batch,
and do a symmetric-cross-entropy loss.

However, we can do even better for free. Note that for the
VTA—T direction, we might have to encode many of the
audio spans anyways, using the lower level audio encoder
(which simultaneously extracts a CLS representation and
a sequence-level pooled representation). To simplify
implementation, we encode all 48 audio spans per video.
We can use these audio spans as candidates.

Thus, we do the following when computing the loss over
audio prediction. We aggregate all 12288 contexts from
the MASKAUDIO tokens in the batch, and we aggregate all
49152 candidate audio spans. We perform an all-pairs
dot product between these two sets, and use it to compute
a symmetric cross-entropy loss over both directions. We
did not encounter any trouble using the same temperature
for both directions (even though for one direction, there

14The empirical distribution for each length, in order from a length of
1 to 15, is [0.03, 0.05, 0.08, 0.11, 0.13, 0.13, 0.12, 0.10, 0.07, 0.05, 0.03,
0.02, 0.01, 0.006, 0.003].

are 12288 options, and for the other, there are 49152).

The combination of these design decisions provide more
‘hard negatives’ for the model during training. We also found
that they worked well to reduce wasted computation on a
TPU. For each video, the joint transformer uses one L = 640
length sequence for transcript-frame matching, two length-L
sequences for the VT—TA direction (as we break it up into
two groups of 8 frames each), two length L sequences for
the VTA—T direction, and finally one length-L sequence of
text. These sequences can all be vectorized together, and the
total batch size is 6 x the number of videos. This is helpful
because using an even-numbered batch size reduces wasted
computation on a TPU.

D. Downstream Task Implementation Details

In this section, we present information for how we adapted
& RESERVE on downstream tasks.

D.1. Setup for finetuned tasks

For adapting & RESERVE in a finetuned setting, we take
the following approach. We use a linear warmup of the
learning rate over the first half of the first epoch, with a linear
decay thereafter to 0. To find the learning rate, we did a
small grid search generally centered around le-5. Our full
hyperparameters are shown in Table 8.

When finetuning (and pretraining), we did not use any
dropout to make implementation simpler. Instead, as a way
to apply regularization, we used the same Lo penalty as in
pretraining (a weight decay of 0.1), but with respect to the
pretrained weights. This idea was used in [| | 8] among other
works, and although it often tends to underperform dropout
[73], it is simple to implement.

D.1.1 Visual Commonsense Reasoning

As mentioned in the main text, VCR considers two subtasks:
@Q— A, where models are given a question and must choose
the right answer given four options; and QA— R, where
models are given a question (and the right answer) and must
select the right rationale.

In our setup for this task, we treat it as a four-way classifi-
cation problem, extracting a single score from each answer
or rationale candidate. An example QQ— A is:

What is going to happen next? answer: person2 is going to say how cute person4’s
children are. MASK

An example QA— R:

What is going to happen next? person2 is going to say how cute persond’s children
are. rationale: It looks like person4 is showing the photo to person2, and person2 will
want to be polite. MASK

We extract representations from the MASK position (which
are of dimension dy,), score them with a newly-initialized

dp, x 1 weight matrix, and optimize scores with softmax-cross
entropy.

Both VCR subtasks use only a single image. We also
followed past work in ‘drawing on’ the provided detection
tags to the image [128]. These are unambiguous references to
entities that are then referred to in the question, answer, and
rationale. For example, text might reference a ‘personl’,
which corresponds to an image region. When drawing on
these detection tags, we do so in a deterministic way — for
example, ‘personl’ always gets the same box color. We
determine the box color by hashing the object’s ID (in this
case, ‘personl’) and using that to determine the hue. The
model learns the connection between boxes with different
hues, and the names, during finetuning.

We randomly flip images left or right, so long as there is no
instance of the word ‘left’ or ‘right’ in the question, answer,
or rationale candidates. We did no other data augmentation
(other than randomly resizing images to between 100% to
110% of the network’s size).

D.1.2 TVQA

TVQA provides models with a video, a question, and five
answer candidates; we represent this as five distinct sequences
for the model to score (one per candidate). The version of
TVQA that we used also gives models annotations for the
time region in the video that is being referenced. It is
not clear that only using this region would provide enough
context to be able to understand what is going on — enough
to answer correctly. Thus, for each question, we extract
35 seconds of video around the provided time region. We
then provided the model with two numbers corresponding
to the time region, relative to the cropped time interval. For
example, if the provided timestamp annotation is [to, t1], we
use the following region:

t, = (to +t1) @)
2

ts =t.—17.5 (5)

te=1t.+17.5 ©)

The location of [t, t1] in relative coordinates is then:

to—t
tg: 0 s (7)
te —ts
t1 —ts
=3 8
Pt — ¢ ®

We provide models with ¢ and ¢7, multiplied by 100 and
casted to an integer. Thus, an example TVQA instance might
look like:

1 to 28 What is Janice Holding on to after
Chandler sends Joey to his room? Chandler’s tie.
MASK[subtitles or audio]

This text input corresponds to the first ‘segment’ of a
video; to it we append subtitles (or audio representations)
from seven segments from the provided TVQA video (with
accompanying frames).

D.1.3 Kinetics-600

We evaluate ® RESERVE on Activity Recognition over the
Kinetics-600 dataset [19]. Here, the model has to classify
a short 10-second video clip into a mutually-exclusive set
of 600 categories, like ‘assembling bicycle’ or ‘alligator
wrestling’. We consider performing this task in a finetuned
setting, so as to better compare to prior work. We format
each example by extracting 4 video frames from the clip
(sampled uniformly), and extracting 6 audio subsegments
(totalling 10 seconds of audio). The model processes these
inputs along with a MASK token, where we extract a vector
representation. We initialize the 600-way classification layer
with the activations of our Text Span Encoder, over the names
of the 600 categories.

We finetune the model jointly over two settings: a setting
where audio is provided, and a setting where no audio is
provided, to allow us to investigate both settings. We tried
to closely follow VATT’s finetuning approach [2], including
their exact data augmentation settings. We used a batch size
of 64 videos (that we process simultaneously ‘with audio’ and
‘without audio’). We used the same image augmentation code
as VATT [2], and finetuned for 15 epochs. We used a learning
rate of 5e-6 for ® RESERVE-L and 1e-5 for & RESERVE-B.

D.2. Setup and prompting for Zero-shot tasks

Here, we discuss how we set up various tasks for
© RESERVE in a fully zero-shot setting. In addition to
evaluating ® RESERVE, we also evaluate CLIP [92] in the
same zero-shot setting. CLIP is not pretrained on videos,
and it cannot jointly encode text. For each task, we construct
CLIP’s label space by taking our prompt and substituting in
each possible answer option. We average together the logits
over all frames, and take a softmax, giving us a distribution
over the task-specific label space.

D.2.1 Zero-shot Action Anticipation on EPIC-Kitchens

We study the task of action anticipation from the EPIC-
Kitchens dataset [26], a large egocentric video dataset with
700 unscripted and untrimmed videos of cooking activities.
In action anticipation, a model must predict a future action
that comes 7, seconds after a given video clip. The observed
segments are of arbitrary length; we follow prior work [26]
and set 7, = 1.

The model tries to choose the correct noun and verb that
happens next, given a list of predefined options for each. We
report results on each category using the class-mean top-5
recall.

25

Overall Unseen Kitchen Tail Classes
Model Verb Noun Act Verb Noun Act Verb Noun Act
RULSTM [38] 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
AVT+ (TSN) [46] 25.5 31.8 14.8 255 23.6 11.5 185 258 126
AVT+ [46] 28.2 32.0 159 195 239 119 21.1 258 14.1
Chance 64 20 02 144 29 05 16 02 0.1
8 CLIP (VIT-B/16) [92] 133 145 2.0 123 84 21 143 143 1.7
S CLIP (RN50x16) [92] 165 128 22 134 70 1.2 17.1 126 25
§ & RESERVE-B 179 156 2.7 11.0 157 44 18.0 127 20
© RESERVE-L 15.6 193 45 14.1 184 34 147 185 44
© RESERVE-B (+audio) 20.9 17.5 3.7 155 20.1 43 207 145 32
© RESERVE-L (+audio) 23.2 23.7 4.8 20.3 21.0 59 227 21.6 4.0
_ RULSTM [38] 253 267 11.2 194 269 9.7 17.6 16.0 79
§ AVT+ [46] 25.6 288 12.6 209 223 88 19.0 22.0 10.1
® RESERVE-L (+audio) 24.0 25.5 5.8 22.7 264 7.0 23.7 242 47

Table 10: & RESERVE gets competitive results on EPIC
Kitchen Action Anticipation challenge with zero-shot, over
methods from prior work.

Zero-shot inference approach. We directly evaluate
the pretrained ® RESERVE on action anticipation to verify
the knowledge learned during pre-training. All prior work
reported on the official leaderboard use supervision from the
in-domain training set, which we do not use at all [46, 38].

For each action segment, we sample at most N = 8 image
frames and their associated audio, with fixed time interval
t = 2.0 preceding it and ending 7, seconds before the start
of the action. We append a MASK token as the sole text input
(at the last frame, after audio is optionally included).> We
create short phrases out of all candidate nouns and verbs,
and use that as our label space to simultaneously predict
them both. We compute the score for each verb and noun
independently by averaging their scores, over all labels for
which they appear.

Results. We show the full zero-shot action anticipation
results in Table 10. We also show our results on the test set
here for our best performing model (& RESERVE-L, with
audio provided). It gets competitive results on verb and
noun prediction — with only 1.6% and 3.3% lower compared
to the challenge winner method AVT+ [46], which is fully
supervised and use additional object-level annotations. On
Unseen Kitchen and Tail Classes, our model outperforms
AVT+ on noun and verb. Overall, audio significantly im-
proves the results — & RESERVE-L (+audio) outperforms
© RESERVE-L with an average 3.0%, which suggests that it
is useful for this task.

D.2.2 Zero-shot Situated Reasoning

Next, we evaluate on situated reasoning (STAR) [1 19] which
requires the model to capture the knowledge from surround-
ing situations and perform reasoning accordingly. STAR

15We were unable to find a better text based prompt than this, as we
found that they often biased the model towards linguistically relevant words;
however, we suspect that such a prompt does exist.

dataset includes four types of questions, including interaction,
sequence, prediction, and feasibility. A model is given a
video clip, a templated question, and 4 answer choices.

Zero-shot inference approach. For each video clip, we
sample N = 8 image frames uniformly from the video, we
also optionally include the video’s sound.

To reduce domain shift between YouTube data — where
people don’t typically ask visual questions, and where ASR
typically does not insert question marks — we convert the
question-answer pair into a statement. We did so using the
question-answer templates provided by the author, with the
answer replaced by a MASK. For example, “Q: What did the
person do with the bottle? — A: Put down.” will be converted
to “The person MASK the bottle.” .

We put the converted statement into the first frame and
use the four candidate answers as a unique label space (that
differs from example to example). Like with EPIC-Kitchens,
we also evaluate how much audio can help by masking the
audio inputs.

Results. We show our zero-shot STAR results in Ta-
ble 5 in the main text. Our base model outperforms all
supervised prior work by 3.7%. The model with audio per-
forms better, with average 1.1% improvement. Interestingly,
© RESERVE-L is worse than ® RESERVE-B, we suspect
the reason is ® RESERVE-L is sensitive to grammar details.
Given the previous example, we note that while ‘Put down’ is
a valid answer that might make sense both semantically and
syntactically, a different answer ‘pick up’ might be flagged
by some English speakers as being ungrammatical: the in-
stantiated template would then be ‘the person pick up the
bottle.” We noticed instances of the larger model paying
greater attention to these syntax-level details, even though
they were not the focus of the task. It does suggest, how-
ever, that additional prompting (or label space augmentation)
could resolve these issues and increase performance even
further.

D.2.3 Zero-shot LSMDC

We evaluate our model on Movie Fill-in-the-Blank [96,

] task, which based on descriptive audio description for
the visually impaired. Given a movie clip and an aligned
description with a blank in it, the task is to fill in the blank
with the correct word. Following [82], we report prediction
accuracy in test set of 30,354 examples from 10K movie
clips.

Zero-shot Inference approach. We sample N = 8
video segments uniformly over the movie clip, and extract
the audio and middle frame of each segment. We replace
the ‘blank’ token in each description with a MASK token,
and provide it (as text-based input) to the model at its final
segment. For the other segments, we optionally provide the
model with audio; for all segments, we provide the associated

26

image frame. We use the vocabulary set in the LSMDC
dataset as our label space (for what the ‘missing word’ might
be).

Results. Our results are shown in Table 5 in the main
text. Our model obtains 31% when audio is included, which
outperforms human text-only performance (30.2 %) [82],
predicted by human annotators. A supervised LSTM obtains
34.4% in this text-only setting [82] which suggests that there
is a certain textual bias in this task, which our model cannot
learn (as it is zero-shot). This also suggests that state-of-
the-art supervised models exploit patterns in this vocabulary
distribution.

Without such an advantage, our model performs well,
outperforming CLIP (2%) by a large margin. This suggests
that jointly reasoning over both the visual situation, and the
linguistic context of the provided sentence, is helpful for
zero-shot performance on LSMDC fill-in-the-blank.

D.2.4 Zero-shot MSRVTTQA

Finally, we evaluate our model on MSR VTT-QA, a question-
answering task over videos [120]. We provide a model with
N = 8 video segments sampled uniformly from the video
clip, and extract an image from each one. For the first seven
segments, we optionally include audio extracted from that
point; at the last segment, we insert a converted version of
the question, along with a MASK. We compare the similarity
of that hidden state to the top 2000 most common answers,
similar to past work [128].

Similar to STAR, we convert the questions into statements
to minimize drift away from the pretraining distribution. We
use GPT3 prompted with several examples for this. Our
exact prompt is the following:

Input: what is a car being driven through?

Output: a car is being driven through _.
Input: who are running across screen?
Output: _ are running across screen.
Input: when is a girl performing?
Output: a girl is performing at _.
Input: what is a cartoon doing?
Output: a cartoon is _.
Input: how many women talk in a bedroom?
Output: _ women talk in a bedroom.
Input: what a man playing while dancing with others?
Output: a man is playing _ while dancing with others.
Input: where is a flag hoisted?
Output: a flag is hoisted in _.
Input: who talks to another man on the couch?
Output: _ talks to another man on the couch.
Input: what does a teenage girl try to get at a public restroom?
Output: a teenage girl tries to get _ at a public restroom.
Input: when do the models walk as the audience watches?

Output: the models walk as the audience watches at _.

Input: what shows a person killing animals in a green forest?
Output: _ shows a person killing animals in a green forest.
Input: who does a man ask to go on a date?

Output: a man asks _ to go on a date.
Input: what are three people sitting on?
Output: three people are sitting on _.
Input: ${question}

Output:

Then, given a new question ${question}, GPT3 gen-
erates a converted output, wherein we can replace it’s un-
derscore with a MASK. GPT3 works well at this conversion,
though sometimes it generates a sentence where inserting the
‘correct answer’ feels gramatically strange. For example, the
question ‘how many women talk in a bedroom?’ suggests
any integer might be a reasonable answer. On the other hand,
‘_ women talk in a bedroom’ implies that ‘one’ is not a valid
answer (since ‘women’ is plural). We note that the errors
caused by this conversion technique are specific to English
grammar, and so if such a question-conversion approach was
done in other languages, there could be more (or less) errors
that directly result.

Our results are shown in Table 5. Of note, our model
through automatic question-conversion outperforms Just Ask
[123], which performs an analogous (supervised-guided)
question conversion on all its YouTube transcripts, before
pretraining. Our model also outperforms CLIP, which cannot

naturally handle dynamic situations.

E. Dataset Collection

In this section, we discussed how we curated data for
YT-Temporal-1B. We had several goals in mind. We wanted
to use only public-facing data, which motivated our choice
of YouTube as it is a public platform that users understand
is public [65]. We wanted to use this platform to examine to
what extent we can learn multimodal neural script knowledge
from web data alone.

Our data collection strategy in this work was informed
by past work, notably MERLOT [128]. That paper found
that increasing the diversity and scale of a video corpus both
allowed for better learned representations. At the same time,
the data collected by MERLOT (YT-Temporal-180M) has
issues. Of note, the authors’ scraping strategies — to prioritize
monetized content — also led to a lot of U.S. local news being
in that corpus (roughly 30% of all data). Local news might
be problematic to learn from, particularly in that quantity,
due to its numerous biases (e.g. racist coverage on ‘crime’
[45, 31, 30, 58]). Our goal was to expand the dataset in both
diversity and size to 20 million videos, while having less
local news and without scraping private content.

High level approach. We adopt a similar dataset collec-
tion strategy as in MERLOT [128]. In the first phase, we
identify a candidate set of videos ID to download. In the
second phase, we open each video ID in YouTube and apply

27

several filtering steps that go from inexpensive to expensive.
The filtering steps allow us to exit early and possibly avoid
downloading the video if the video seems unsuitable for our
purpose from the title, description, and captions alone.

For a Datasheet [41], please see the MERLOT paper
[128].

E.1. Candidate video IDs

For MERLOT’s YT-Temporal-180M, the bulk of the
video IDs were identified by applying breadth-first-search
on YouTube channels from HowTol100M [85] and VLOG
[36]. Each channel often links to other channels, and given
a channel it is inexpensive to obtain a list of all its videos
using the youtube-dl Python package.

In this paper, we considered numerous approaches to
search for diverse, visually grounded videos. We ended up
using an approach where we used YouTube’s recommended
videos algorithm to suggest similar videos to Y T-Temporal-
180M. We went through all non-news and non-sports videos
Y T-Temporal-180M, and opened each video up in YouTube.
For each other video that YouTube recommended, we re-
trieved its channel ID — giving us access to not just that
video, but all other videos. This approach yielded 2 million
channels, with 200 million videos among them.

E.2. Filtering video IDs by channel

Given this (large) list of channels, each with many videos,
we took steps to filter it further. We used the python c1d3
library to remove channels whose titles might not be in
English. We then finetuned, and used, a language model to
identify channels likely to have visually grounded videos,
which we describe next.

In more detail, we selected 2000 videos, and asked workers
on Mechanical Turk to rate their level of groundedness, their
genre, and whether they had explicit content or not. The
questions we asked are shown in Figure 8. We annotated 2k
videos under this schema, and trained a model to predict the
annotations given video metadata.

For model training, we used a slightly different setting
to what we gave the crowdworkers. We trained a model to
predict the labels, given a formatted list of 5 video titles
from the same channel. During training, we made the weak-
supervision assumption that all videos from a channel have
exactly the same rating (as the video we annotated). This
enabled us to collect 84k examples from our 2k annotations.
The model we chose was T5-base model [93], which generates
the labels left-to-right in text form (and which we converted
automatically to a structured representation).

We then used this model to identify channels that seem
especially promising. For each channel with at least 5 videos,
we randomly sampled 8 sets of length-5 videos, and used
the finetuned TS5 model to classify them. We filtered out
any channel that had at least 25% of likely non-English or

${VIDEO}
Q1. How would you describe the role of English speech in the
video?
a. This video doesn’t have spoken English, or if it does, it’s
irrelevant to what’s going on in the video.
b. This video has English speech that describes, or adds onto,
the visual content.
Q2. Select at least one genres of the video:

. Gaming
. News

How-to
. Chatting
. Sports
. Music
. Movies / Drama
. Documentary

Miscellaneous

o= I S -V N

Q3. Select if any of the following are true:
a. A variety of objects are interacted with.
b. A variety of actions are performed.
c. A variety of scenes are performed.
d. This video is a slideshow.
e. This video contains racist or sexist content..

Figure 8: Video annotation. We had workers on Mechanical
Turk annotate 2000 videos in our dataset with this question-
naire, allowing us to then train a model to identify suitable
channels for our purpose.

irrelevant-English videos, any channel that had at least 25%
of slideshows, and any channel that likely had racist or sexist
content.

One side benefit of this model is that it allowed us to
estimate our videos’ genre breakdown before downloading
them. We found 1% Gaming videos, 11% News videos, 20%
How-To videos, 20% ‘chatting’ videos, 5% sports videos, 5%
Music videos, 3% Movies/Drama videos, 4% Documentary
videos, and 31% Miscellaneous. The Gaming videos were
then filtered out.

We used the classification model to create a budget for
how many videos to download from each channel; with the
aim to download more videos from likely more-grounded
channels. Using the answers to Q3 (from Figure 8), we
gave each channel 1 point for likely having ‘a variety of
objects’, 2 points for ‘a variety of actions’, and 0.5 points for
‘a variety of scenes.” We subtracted 3 points if it was likely
to be a slideshow. (Likely-racist or sexist channels were
already filtered out.) We then z-normalized and softmaxed
the channel scores, and used the result as the channel-level
budgets. Any channel with an aggregate ‘interestingness’
score of 1 standard deviation above the mean would then
have a budget of 8x larger than the mean. We clipped the
channel-level budgets to include at most 500 videos per

28

the sound of birds

Figure 9: An image prompt used in zero-shot audio classifi-
cation. Here, “the sound of” is always inserted, and the word
“birds” is one of the labels in ESC50 [90]. We consider one
image prompt for each label in ESC50 (or whichever dataset
we are using).

channel.
This process (finally!) gave us 30 million YouTube video
IDs that were likely to be high-quality.

E.3. Filtering videos from their metadata

Last, we filtered and downloaded these videos using a
filtering approach similar to [128]. We first retrieved the
video metadata and used it to filter out ‘gaming’ videos. We
then retrieved the video’s transcript, and filtered out any
video without a ‘dense’ span of spoken words — defined as
an interval of 30 seconds where at least 50 words are spoken.
Additionally, we used the Python package c1d3 to filter out
any transcript with a probability of less than 80% of being
English. Last, we used a hidden feature in the YouTube API
to download four thumbnails of the video. Using the image
classification model from [128], we filtered out videos whose
four thumbnails had an average cosine similarity of above
85%, or that contained fewer than 1 object from COCO.

Unlike [128], we did not use a sequence-to-sequence
model to ‘translate’ spoken text to text that appears more
stylistically like written English (i.e., by adding capitalization
and punctuation, and removing filler words).

F. Additional Experiments and Exploration

In this section, we briefly include additional experiments,
showcasing our model’s performance on specific tasks that
do not necessarily require multimodal script knowledge.

F.1. Zero-shot Audio classification

We evaluate & RESERVE on the task of zero-shot audio
classification, to study to what extent its learned audio repre-
sentations can directly predict text-based labels. We conduct
this evaluation on environmental sounds from ESC50 [90],
urban sounds from US8K [98], and (as part of the privacy-
minded exploration in Appendix A) celebrity voices from
VoxCeleb2 [87].

Accuracy (%)

Model Prompting ESC50 US8K VoxCeleb2
AudioClip 68.6 68.8
Text-only. 41.6 60.2 10.8
© RESERVE-L Image-only. 42.8 54.3 13.3
Image and text. 52.2 62.3 9.6

Table 11: Zero-shot audio classification accuracies (%) on
ESC50 [90], US8K [98], and VoxCeleb2 [87]. We compare
our model with AudioClip [54], which was pretrained on
supervised data from AudioSet [43]. Our ® RESERVE per-
forms well across the board, especially when given both the
image and the text as a prompt — demonstrating its OCR
capability.

We consider the format where we encode an audio input
into a CLS level representation, and retrieve the most-similar
label given a set of encoded options. We encode the audio
input with our encoder, which takes in as input audio clips
of length at most 1.6 seconds. For shorter audio clips (like
many sounds in ESC50), we repeat them in time until their
length is at least 1.6 seconds. For longer audio clips, we
encode multiple CLS representations and then average the
resulting vectors.

We consider the following ways to encode the labels:

a. Text-only. Inspired by the prompt ‘a photo of’, which is
used in CLIP’s zero-shot image classification task [92],
we give ® RESERVE’s joint encoder a blank image, with
associated tokens the sound of ${label}. We do this
once for each label, giving us a single ‘target’ vector for
each possible label in the dataset.

b. Image-only. Inspired by YouTube videos of sound
effects’®, we created image-only prompts that suggest a
sound (of the target class) is playing in the background.
An example is shown in Figure 9. We encode each image
with our joint encoder, and do this once for each label.

We note that for VoxCeleb2, we use face images of
celebrities rather than this image-based prompt, due to
our interest in exploring whether models can perform
person-level recognition due to the privacy issue (Ap-
pendix A.1.1).

c. Image and text. Here, we combine both of the above
options: encoding one input for each label, using both
the image and text prompt.

For each prompt, we append the token ‘MASKAUDIO’ and
extract the hidden state from there, as our final representation
for that label.

We present our results in Table 11. The results show,
possibly surprisingly, that ® RESERVE can perform optical
character recognition over image prompts like Figure 9 —

16For instance, youtu.be/VmgKryud k.

29

given just the image, its accuracy on ESC50 is higher than
given just text. Its accuracy on ESC50 and US8K improves
further when given both an image and text.

These results are slightly different for VoxCeleb2, which
emphasizes long-tail recognition of people — something that
might be more encyclopedic than semantic, and that we did
not wish to optimize in this work. There, when given an
image of a celebrity’s face, it demonstrates some capacity
at linking it with one of their audio clips — a capacity that
decreases if prompted with additional text. We suspect
that this is due to interpreting the given text as spoken, for
example, Justin Bieber himself saying ‘the sound of Justin
Bieber.” On all celebrities, ® RESERVE struggles versus
recognition-focused models like CLIP [92] (Appendix A.1.1).

Overall, our model displays strong audio understanding
ability. In comparison, AudioCLIP [54] (which is supervised
on human-annotated labels from AudioSet [43]), performs
16% higher on ESCS50, and 6.4% higher on US8K.

F.2. Additional Qualitative Analysis

In Figure 10, we include an additional figure of examples,
of the same format as Figure 5. The examples are chosen
randomly — not by how much & RESERVE improved at
retrieving their audio or text spans over the course of training.

https://www.youtube.com/watch?v=VmgKryu4__k

—~ 100% -

B Match Probability per Epoch
z 75% - @ to the Audio Span
3 ° @ to the Text Span
3
S
E 3 = , i h 4 " y & 50%-
renovated or restored it| and a repaint there at | that's still in original people just keep affordable back i think basically | £ ° L)
other than just some | one stage other alden | condition is when i hy coming back year after people for the parental 2 25%- [°«°
s bought it [MASK] year but now it's come innocent people is here| < L °
9 getting extremely hard &
with the 0% = T = T = 7 =1 =7
4 6 8 10
— 100% -
2 Match Probability per Epoch @ _®
2z 75% ® to the Audio Span
- F ° ® to the Text Span
2 50% -
than student socio- [MASK] clear and student learning so differently in using corrections anything ...iN'have a appear we | we've created to pay g 25% - (] *
economic specific ... | When you were sharing | rubrics developing you'd like to share our writing units we use the same rubric their paper and have | = L)
characteristics in with your partner's did rub ... well ... create our ... the'student go ... 5 .l
- you think of any ways LS Y S S .
addition to the power of| to involve students o 5 i 5 5 10
feedback we

\ Know that expectations that are \ *male-presenting voice introducing the speaker (Paula Andrews);
cheesy synth music in the background*

100% -

g Match Probability per Epoch o - ®
Z 7504 ® to the Audio Span 1
3 ° @ tothe Text Span
] 0 .
& 50%-
| e
Z L & g \ | g
... shells this was shell recipe and boy served it with a little | and some garlic bread | the pollo bendito right and then i'm gonna we'll be seasoning it S 25%- °
to another week of actually my first time have i been missing side salad of ... it... now i just have a little |take these two chicken | with this homemade s
what's for dinner itis | €ver making a stuffed out because ... bit of olive oil heating | breasts and i'm gonna adobo seasoning i &
et o up in a skillet [MASK] couldn't find it 0%2) i i . . 1
y / P ™ ~

‘ dice them up and *female-presenting voice, with a

U.S. southern accent; using a phone microphone

Figure 10: MASKed audio self-supervision on different examples. Similar to Figure 5, we show predictions from
© RESERVE-B over the course of pretraining. Match performance increases over time. The audio prediction in the
first row is perhaps made easier by the speaker’s australian accent. The audio prediction in the second row is perhaps easier due
to the lecture-video setting. In the third row, both audio and text span prediction improves, with text being slightly favored in
the end. This might be in part because of the truncation we do on audio (Section C.3) — the audio span is shorter than the text
span of ‘dice them up and’ so as to not leak information, making prediction more challenging.

30

