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In this supplementary material, we first provide a demo video to comprehensively show the interpolation results in Sec-
tion 1. Then, we elaborate on the implementation details and training strategy of our IDEA-Net in Section 2. We provide
the details of the dataset used in our experiments in Section 3. In Section 4, we visualize the learned point-wise temporal
consistency (i.e., matrix A) by the dual- and single- branch models. In Section 5, we provide more visual comparisons.

1. Video Demo
We refer the readers to the video demo at https://github.com/ZENGYIMING-EAMON/IDEA-Net.git, where we show the

interpolation results (ktrain = ktest = 3) of our method and the compared methods.

2. Implementation Details of IDEA-Net
We provide the implementation details in Table 1. We omit the BatchNorm layers and ReLU activation functions that are

carried in each Conv layer, except for the Conv layer at the end of each module. In the feature representation module, we
replace ReLU with LeakyReLU (negative slop is 0.2).

During the training process, we use the EMD loss for both branches and take the average of them as the final training loss.
We use Pytorch [2] to implement our model on a single GPU (GeForce RTX 3090). We use Adam with the initial learning
rate 0.0001 to optimize the model. For all the models, we train 1000 epochs with the batch size set to 14. For the feature
embedding module in the table, we follow the original settings of DGCNN [3].

3. Details of Constructed Datasets
In this section, we provide more details for the DHB dataset and DFAUST dataset used in our paper. As shown in Table 2,

both datasets are composed of 14 sequences, in which the four sequences (Longdress, Loot, Redandblack, Soldier) are 3D
point clouds, and others are 3D meshes. We uniformly sampled 1024 points from each individual frame to construct dynamic
point cloud sequences. For the DHB dataset, we used the top 8 sequences to form the training set and the remaining as the
testing set. For the DFAUST dataset, we used used the top 11 sequences for training and the rest for testing. All the datasets
listed in the table will be released along with our code.

4. Visual Illustration of the Learned Point-wise Temporal Consistency
As mentioned in Section 4.4(f) of the manuscript, we conducted the ablation study to demonstrate the advantage of the

dual-branch design over the single-branch design. Here, we also visualize the learned point-wise temporal consistency, (i.e.,
matrix A) to illustrate the difference between the two designs. Keeping consistent with other ablation studies, we used the
mixed data training mechanism, as mentioned in the last paragraph of Section 4.2 of the manuscript, to train and test our
model on the DHB dataset and we fixed ktest = 3. We fed a random sample pair of the sequence swing into the network
and obtained matrix A. As shown in Fig. 1, it can be seen that the learned matrix A by the single-branch model has many
values distributed in the same column (Fig.1b), meaning that multiple points of P0 are aligned to an identical point of P1.
However, such an observation rarely appear in the matrix A (Fig.1a) by the dual-branch model, which is credited to the

1



Table 1. Implementation details of our network structure. The input and output dimensions are in parentheses.

Module Layer / Operation Output

getGraphFeat (3, 6), Conv2d (6, 64), MaxPooling x1

getGraphFeat (64, 128), Conv2d (128, 64), MaxPooling x2

getGraphFeat (64, 128), Conv2d (128, 128), MaxPooling x3

getGraphFeat (128, 256), Conv2d (256, 256), MaxPooling x4

Feature Embedding Concat (x1+x2+x3+x4, 512), Conv1d (512, 512) x5

MaxPooling x6

AvgPooling x7

Concat (x6+x7, 1024) y1

Concat(x5+y1, 1536), MLP(1536, 512, 256, 128) y2

P0,P1→shared feature embedding F0, F1

Temporal Consistency F0, F1 →inverse distance Ã

Ã → Conv1d (1024, 1024 + 128) -

→ row normalization A

P0,P1,F0,F1 → aligned by A -

→ linear interpolation P0→t,F0→t,P1→t,F1→t

Trajectory Compensation F0→t,F1→t → {Conv1d(1024+128, 1152, 576, 288, 3), Tanh} ∆0→t,∆1→t

∆0→t,∆1→t → compensate P0→t,P1→t O0→t,O1→t

Table 2. Details of the DHB dataset and DFAUST dataset in our experiment.

DHB sequences # frames DFAUST sequences # frames
Bouncing 175 chicken wings 216

Crane 175 hips 697
Handstand 175 jiggle on toes 240
Jumping 150 jumping jacks 461
March 1 250 knees 500
March 2 250 light hopping loose 234
Samba 175 light hopping stiff 214
Squat 1 250 one leg jump 541
Squat 2 250 one leg loose 264
Swing 150 punching 303

Longdress 300 running on spot 331
Loot 300 shake arms 230

Redandblack 300 shake hips 243
Soldier 300 shake shoulders 255

regularization effect of the dual-branch design Note that the ground-truth point-wise consistency is not available, and thus we
cannot quantitatively measure the accuracy of A.

5. More Visual Results
In this section, we illustrate more visual comparisons with the state-of-the-art flow-based method PointINet [1] on the

DHB dataset. As shown in Figs. 2, 3, and 4, we provide results of two methods on the sequences named swing, soldier and
squat 2, respectively. Both methods were evaluated under the setting ktrain = 3 and ktest = 3. It can be seen that for the
sequence with large motion and rotations, i.e., swing (Fig. 2), PointINet [1] produces broken limbs, which do not appear in
our method. For the sequences with smooth motion, i.e., soldier (Fig. 3) and squat 2 (Fig. 4), our method produces fewer
artifacts and holes than PointINet [1].
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Figure 1. Visual illustration of learned A. (a) the dual-branch design. (b) the single-branch design.
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Figure 2. Visual comparisons of the interpolated frames on the test sequence Swing by our method (the top row), PointINet (the middle
row), and the ground-truth (the bottom row). (a), (c) and (e): front views; (b), (d) and (f): back views.



Figure 3. Visual comparisons of the interpolated frames on the test sequence soldier by our method (the top row), PointINet (the middle
row), and the ground truth (the bottom row).



Figure 4. Visual comparisons of the interpolated frames on the test sequence squat by our method (the top row), PointINet (the middle
row), and the ground truth (the bottom row).
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