
Supplementary material

1. Calculation of camera height and camera
pitch

In this section, we introduce ways of calculation of cam-
era height and pitch. We assume that the WCS is con-
structed with respect to the constraint that axis x and axis
y of the WCS are placed on the plane ground.

Camera height

The 3D coordinates of the perspective camera M =
[XW , YW , ZW ]T in the WCS is calculated with its own ro-
tation matrix RW2C , and translation vector TW2C as fol-
lows:

M = −R−1
W2C · TW2C . (1)

Such that the camera height equals to ZW .

Camera pitch

Define the unit vector along the camera optical axis as
VC = [0, 0, 1]T in the CCS. One can easily calculate its
representation VW in the WCS as:

VW = RC2W · VC . (2)

Then it is straightforward to compute camera pitch θ that
defines the angle between the optical axis of the camera and
the ground plane in the WCS.

2. Synthetic dataset generation
To systematically evaluate the robustness of 3D human

pose estimators against variations of camera intrinsic and
extrinsic parameters, we create a synthetic dataset with in-
trinsic and extrinsic parameters augmentation from H36M
dataset. In this section, we describe how we generate this
synthetic dataset in details. First, the mathematics formula-
tion of intrinsic/extrinsic augmentation is introduced. Then
we describe the adopted augmentation parameters.

Intrinsic parameters augmentation

For camera intrinsic parameters augmentation, focal
length f and principal points c are modified while keep-
ing the projected 2D keypoints within the field of view. The
augmentation is performed as follows:

f̂ = f + ∆f,

ĉ = c+ ∆c,

s.t. 0 ≤ {xi}Ji=1 ≤WI,
0 ≤ {yi}Ji=1 ≤ HI

.

(3)

HI and WI as the height and width of the image frame.
xi and yi are the projected 2D keypoint location. Different

camera intrinsics result in different 2D keypoints in the im-
age. Without 3D ray representation, the network struggles
to predict the same 3D pose facing camera intrinsic varia-
tion.

Extrinsic parameters augmentation

For camera extrinsic parameters augmentation, we mod-
ify camera viewpoint β (camera rotation), the relative dis-
tance between subject and the camera γ (camera translation)
and pitch of the camera θ (camera pitch). The augmentation
is conducted as follows with constraint that the projected 2D
keypoints are in the image frame:

β̂ = β + ∆β,

γ̂ = γ + ∆γ,

θ̂ = θ + ∆θ,

s.t. 0 ≤ {xi}Ji=1 ≤WI,
0 ≤ {yi}Ji=1 ≤ HI

.

(4)

By changing camera rotation, camera translation and
camera pitch, we may generate various located virtual cam-
eras. Camera embedding is learned for every camera for
generalisation of lifting network, which is helpful for ac-
curate trajectory prediction. The specific augmentation pa-
rameters are detailed in the following section.

Augmentation parameters

Without loss of generality, we randomly select 1 cam-
era whose id number is 55011271 from H36M to conduct
camera augmentation. The overall summary of the dataset
is shown in Table 1.

To evaluate model performance against camera intrinsic
variations, we generate the intrinsic testing dataset. Specifi-
cally, the focal length and the coordinate of principal points1

of simulated cameras are augmented. Note that for train-
ing dataset and extrinsic testing set, camera intrinsics are
the same as original set-up in H36M. For instance, the fo-
cal length of simulated cameras in the intrinsic testing set
ranges from 1100 to 1180, compared with the cameras from
training set whose focal length is in the 1143-1150 range.
Similarly, for the x coordinate of principal point of simu-
lated cameras, it has a longer range of 450 to 550 in the
intrinsic testing dataset, compared with a range of 508 to
514 in the training dataset. In total, we have 100 virtual
cameras generated with fixed extrinsic for intrinsic general-
ization test.

For extrinsic generalization test, camera rotation, cam-
era pitch and camera translation are augmented. Specifi-
cally, camera rotation ranges from 0 to 360 degrees at 30
degree interval such that extrinsic-testing cameras evenly

1We set the same value for x coordinate and y coordinate of principal
point for simplicity.



Table 1. Technical summary of synthetic dataset constructed based on H36M.

Dataset Num. of camera pose focal length/pixel x-coordinate of principal point/pixel camera rotation/degree camera pitch/degree camera translation/meter subjects

training 324 [1143:1150] [508:514] [60:300:120] [2:38:2] [9.05:11.70:0.76] S1, S5, S6, S7, S8
extrinsic testing 126 [1143:1150] [508:514] [0:360:30] [1:37:2] [9.43:13.19:0.76] S9, S11
intrinsic testing 100 [1100:1180] [450:550] 0 12 4.5 S9, S11

revolve around the subjects. Camera pitch ranges from 0
to 40 degrees, which covers both frontal-view camera and
large-pitch cameras. The interval of camera pitch is 2 de-
grees for both training dataset and extrinsic testing dataset.
Camera translation ranges from 9 to 14 meters such that the
relative distance between camera and subject is changing
from the near to the distant. The interval of camera transla-
tion is 0.76 meter for training and extrinsic testing cameras.
In total, 126 virtual cameras are generated with fixed intrin-
sic for extrinsic generalization test. And 324 cameras are
generated for training, such that camera embedding module
learns to cope with vast range of camera pose variations. We
set the augmentation parameter to the range which are com-
mon in the real-world scenarios (e.g., unmanned stores).

As for person scale generalization, the total length of
augmented human limbs (bone length) ranges from 2.5 to
4.5 meters with the height of human ranging from 1 meter
to 2 meters correspondingly. Note that the synthetic 3D hu-
man skeletons are only used for person scale generalization
test, but excluded during model training stage.

3. Supplementary experiments

In this section, we report additional evaluation results to
fully analyze the proposed Ray3D on public and synthetic
datasets.

3.1. Evaluation on public benchmarks

H36M evaluation Table 2 shows the performance of the
methods that focus on root-relative pose estimation where
detected 2D keypoints are taken as input. When the num-
ber of video frames taken as input are similar, we can ob-
serve that our Ray3D obtains comparable results compared
to SOTA methods under MPJPE metric in Camera Coor-
dinate System (CCS). MPJPE of Ray3D surpasses Pose-
Former [10] and Videopose [5] by 2.3mm and 0.9mm re-
spectively, but Ray3D performs worse than RIE [6] by
1.1mm. We argue that Ray3D is designed for absolute 3D
pose estimation in World Coordinate System (WCS), such
performance of root-relative pose estimation in CCS is ac-
ceptable.

Table 3 shows the results for absolute pose estimation in
WCS using GT 2D poses on H36M dataset. It can be seen
that Ray3D outperforms all SOTA methods for both Abs-
MPJPE and MRPE with clear margin. Compared with RIE,
our method reduces Abs-MPJPE by 9.6mm and MRPE by
4.2mm respectively. These results demonstrate that Ray3D

is effective and generates more accurate absolute 3D loca-
tions.
3DHP evaluation Table 4 shows the results for absolute
pose estimation in WCS using GT 2D poses on 3DHP
dataset. One can observe that Ray3D outperforms all SOTA
methods for both Abs-MPJPE and MRPE with clear mar-
gin. For instance, compared with PoseFormer [10], our
method reduces Abs-MPJPE by 44.4mm and MRPE by
51.7mm respectively.
Cross-dataset testing We train comparing models on
H36M dataset, and evaluate them using H36M, Humaneva-I
and 3DHP. 14-joint definition is applied for all datasets dur-
ing cross-dataset testing. For H36M and 3DHP, we remove
mid spine, neck and chin keypoints. As for Humaneva-I,
the thorax key-point is removed out of original 15 joints.
As shown in Table 5, none of the baselines work well in
cross-scenario situations while the Ray3D shows good gen-
eralization performance in H36M, Humaneva-I and 3DHP
dataset. For instance, PoseFormer [10] is able to predict
better root-relative pose than Ray3D, but it struggles to pre-
dict precise root joint. And PoseLifter [2] fails to generalize
to cross datasets, achieving inferior MRPE performance.
Evaluation with noisy cameras To test the robustness of
Ray3D when taking noisy cameras parameters as input, we
add gaussian noise to intrinsic parameters (i.e., focal length
and center points) and extrinsic parameters (i.e., rotation
and translation) of H36M’s cameras respectively.

The results of using noisy focal length and center points
as input are shown in Fig. 1 and Fig. 2. As for the intrinsic
parameters, Videopose [5], PoseFormer [10] and RIE [6]
do not use focal length and center points as input, noisy
intrinsic parameters has no impact on these methods. While
Ray3D and Poselifter [2] explicitly decouple the intrinsic
parameters from the input. Noisy intrinsic parameters cause
inaccurate decoupling, which results in slight performance
changes.

As for the extrinsic parameters, Videopose [5], Pose-
Former [10] and RIE [6] use extrinsic parameters to con-
vert final estimation from CCS to WCS, noisy extrinsic pa-
rameters cause performance degradation. Ray3D uses the
well calibrated camera extrinsic parameters as an input, es-
pecially the camera height and camera pitch, which makes
Ray3D sensitive to camera pitch change. As shown in the
Fig. 3, after we added gaussian noise to camera pitch, the
MPJPE increases from 81.2mm to 110.6mm. Fig. 4 shows
the performance with noisy camera yaw, Ray3D does not
decrease significantly. As shown in Fig. 5, all methods have



Table 2. Quantitative evaluation results under MPJPE on H36M using detected keypoints as input. (f = 9) means this approach utilizes 9
consecutive frames for pose estimation, and (f = 1) means the approach does not make use of temporal information. * means this approach
using 2D keypoints detected by CPN. Best results are shown in bold.

Detected keypoints as input Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average.

Dabral et al. [3] ECCV’18 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 52.1
Cai et al. (f = 7) [1] ICCV’19 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Videopose. (f = 9)* [5] CVPR’19 46.4 48.9 45.7 49.8 52.5 61.5 47.7 46.8 59.9 68.1 50.7 47.5 52.7 38.4 42.1 50.6
Yeh et al. [9] NIPS’19 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
UGCN (f = 96) [7] ECCV’20 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.6
PoseFormer (f = 9)* [10] ICCV’21 47.9 51.5 49.3 50.8 53.7 58.6 49.5 46.6 62.0 70.3 52.6 49.3 53.8 40.5 43.0 52.0
PoseAug (f = 1)* [4] CVPR’21 - - - - - - - - - - - - - - - 52.9
RIE (f=9)* [6] ACMMM’21 44.8 47.9 46.1 47.4 50.4 57.6 45.7 44.6 57.0 64.2 49.5 45.7 50.9 36.6 39.8 48.6
Ray3D (f = 9)* 44.7 48.7 48.7 48.4 51.0 59.9 46.8 46.9 58.7 61.7 50.2 46.4 51.5 38.6 41.8 49.7

Table 3. Quantitative evaluation results under Abs-MPJPE and MRPE on H36M using GT as 2D input. (f = 9) means this approach utilizes
9 consecutive frames for pose estimation, and (f = 1) means the approach does not make use of temporal information. Best results are
shown in bold.

Abs-MPJPE Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average

Videopose (f = 9) [5] CVPR’19 73.7 99.6 88.8 82.8 81.7 121.8 89.8 83.8 110.6 234.4 95.8 92.4 91.2 69.7 64.2 98.7
PoseLifter (f = 1) [2] ICCV’19 65.5 86.9 103.9 81.4 95.2 109.2 80.1 107.3 152.4 245.0 106.2 95.6 115.5 87.1 69.8 106.8
PoseFormer (f = 9) [10] ICCV’21 88.3 88.3 91.3 94.3 96.1 127.8 101.0 120.0 114.5 227.7 102.4 110.8 97.2 99.1 91.1 111.6
RIE (f = 9) [6] ACMMM’21 75.4 90.7 80.5 80.9 75.3 100.4 85.9 92.2 93.1 200.9 86.5 87.9 88.5 67.8 58.6 91.0
Ray3D (f = 1) 60.2 75.2 102.0 70.6 92.5 85.2 71.7 67.5 123.9 129.5 87.0 77.6 92.7 74.0 67.7 85.2
Ray3D (f = 9) 65.6 70.4 100.1 64.1 92.0 86.6 65.6 73.2 119.2 117.4 92.9 70.1 77.1 64.4 61.4 81.4

MRPE Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average

Videopose (f = 9) [5] CVPR’19 57.6 88.0 77.2 69.4 74.2 110.3 71.4 73.3 97.0 225.9 86.7 77.5 80.9 61.2 52.2 86.9
PoseLifter (f = 1) [2] ICCV’19 51.3 75.6 87.8 67.9 83.0 96.3 63.8 100.0 138.6 231.6 93.5 83.8 108.4 73.1 51.1 93.7
PoseFormer (f = 9) [10] ICCV’21 63.2 63.2 77.4 77.4 84.3 114.6 76.8 103.1 96.5 215.8 88.0 90.2 85.5 89.3 78.0 95.9
RIE (f = 9) [6] ACMMM’21 60.6 78.3 69.5 69.5 65.1 90.6 68.3 81.5 79.1 192.1 76.2 73.6 80.2 59.5 48.1 79.5
Ray3D (f = 1) 45.4 63.4 97.7 57.5 88.0 74.4 53.4 59.4 116.9 119.1 79.8 60.9 85.5 64.8 56.1 74.9
Ray3D (f = 9) 59.3 65.4 99.8 55.1 93.1 80.5 55.2 70.9 116.4 104.6 89.9 59.8 70.3 56.8 52.4 75.3

Figure 1. Performance under MPJPE and MRPE with noisy focal
length are plotted in (a) and (b) respectively.

Figure 2. Performance under MPJPE and MRPE with noisy center
points are plotted in (a) and (b) respectively.

the same performance drop when provided with noisy cam-
era translation.

Figure 3. Performance under MPJPE and MRPE with noisy cam-
era pitch are plotted in (a) and (b) respectively.

Figure 4. Performance under MPJPE and MRPE with noisy cam-
era yaw are plotted in (a) and (b) respectively.

3.2. Evaluation on synthetic benchmarks

Integrate Videopose with Ray3D We integrate proposed
Ray3D techniques with another baseline method Video-
pose [5]. The model is trained and evaluated on the pro-



Table 4. Quantitative evaluation results under MPJPE, Abs-MPJPE and MRPE on 3DHP using GT as 2D input. (f = 9) means this approach
utilizes 9 consecutive frames for pose estimation, and (f = 1) means the approach does not make use of temporal information. Best results
are shown in bold.

method \metric MPJPE Abs-MPJPE MRPE

Videopose (f = 9) [5] 52.5 148.4 145.8
PoseFormer (f = 9) [10] 40.8 147.8 147.5
PoseLifter (f = 1) [2] 78.2 143.6 129.1
RIE (f = 9) [6] 47.4 140.8 141.0
Ray3D (f = 1) 48.4 118.2 114.0
Ray3D (f = 9) 46.0 103.4 95.8

Table 5. Cross dataset evaluation. We adopt a 14-joint skeleton training on H36M, testing on H36M, Humaneva-I and 3DHP datasets.
MPJPE, Abs-MPJPE and MRPE are adopted. (f = 9) means this approach utilizes 9 consecutive frames for pose estimation, and (f = 1)
means the approach does not make use of temporal information. The unit of all numbers is mm. The best results are in bold.

method \datasets H36M HumanEva-I 3DHP
MPJPE Abs-MPJPE MRPE MPJPE Abs-MPJPE MRPE MPJPE Abs-MPJPE MRPE

Videopose (f = 9) [5] 46.1 133.4 120.9 85.1 284.6 283.1 104.6 1262.8 1266.1
PoseFormer (f = 9) [10] 50.0 146.6 129.8 79.4 260.7 253.9 101.9 1313.6 1320.1
PoseLifter (f = 1) [2] 56.9 147.4 135.1 3690.2 15170.6 16082.6 1180.9 6839.0 6899.4
RIE (f = 9) [6] 41.5 136.4 125.1 82.0 272.9 285.1 102.4 1185.0 1187.0
CDG (f = 1) [8] 52.0 - - - - - 111.9 - -
Ray3D (f = 9) 39.3 106.8 98.5 81.5 121.5 99.3 108.1 422.4 406.0

Figure 5. Performance under MPJPE and MRPE with noisy trans-
lation are plotted in (a) and (b) respectively.

posed synthetic dataset. As shown in the Fig. 6, Video-
pose [5] integrated with 3D ray representation and camera
embedding techniques performs better than vanilla method
under Abs-MPJPE metric. Same performance gain can be
observed in the Fig. 7 under MRPE metric, which show-
cases that Ray3D incorporated to the different existing
frameworks bring consistent improvement.

Intrinsic generalization As shown in the Fig. 8 (a) and (b),
principal point changes affect VideoPose, PoseFormer, RIE
to varying degrees under MPJPE and MRPE metrics respec-
tively. In contrast, both Ray3D and Ray3D w/o CE achieve
stable result. This result clearly showcases the merits of our
ray-based input representation.
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Figure 6. Figures (a), (b), (c) and (d) showcase the performance
using Abs-MPJPE metric in case of rotation, camera pitch, trans-
lation and body scale variations correspondingly. The x-axis de-
notes the degree of camera rotation, the degree of camera pitch,
euclidean distance between camera and subject in meters and the
total length of human limbs in meters respectively.

4. Qualitative results in WCS

In this section, we provide qualitative results generated
by Ray3D and other state-of-the-arts on H36M and 3DHP
datasets. Specifically, we visualize 3D keypoints in WCS
generated by corresponding methods.
H36M Fig. 9 shows qualitative comparison of Ray3D with
VideoPose, RIE and PoseFormer on H36M. We train all
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Figure 7. Figures (a), (b), (c) and (d) showcase the performance
using MRPE metric in case of rotation, camera pitch, translation
and body scale variations correspondingly. The x-axis denotes the
degree of camera rotation, the degree of camera pitch, euclidean
distance between camera and subject in meters and the total length
of human limbs in meters respectively.
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Figure 8. Performance under MPJPE and MRPE in case of princi-
pal point changes are plotted in (a) and (b) respectively. The x-axis
represents x-coordinate of 2D principal point of the virtual camera
in pixels.

four models on H36M with 17-joint definition. From the vi-
sualization, we can observe that Ray3D has superior ability
to generate more precise location of root joint with compa-
rable root-relative pose estimation results. Fig. 10 presents
two examples of inferior estimation of Ray3D compared to
baseline, yet the error is close among these methods.
3DHP In Fig. 11, we present the qualitative comparison of
Ray3D with VideoPose, RIE and PoseFormer on 3DHP as
well. The models are trained with 14-joint definition. Our
Ray3D shows better performance than other state-of-the-
arts clearly.
Cross-dataset In Fig. 12, we compare generalization of
Ray3D with other state-of-the-arts on H36M. We train all
four models on 3DHP and test them on H36M with 14-
joint definition. One can clearly observe that Ray3D gener-
ates more accurate estimation results than other approaches,
benefiting from our normalized ray representation and cam-
era embedding design.
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Figure 9. Qualitative comparison of Ray3D with VideoPose, RIE and PoseFormer on H36M. All four models are trained on H36M. First
column shows 2D ground-truth poses. Black color denotes left part of person limbs, red color denotes right part of person limbs. 3D
estimation results predicted by VideoPose, RIE, PoseFormer and Ray3D are shown in the second, third, forth and fifth column respectively.
Dashed lines denote 3D ground-truth poses. Solid lines represent the poses estimated by corresponding approaches. Green and black color
lines denotes left part of person limbs, blue and red lines denote right part of person limbs. 17-joint skeleton is visualised.
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Figure 10. Visualization of inferior performance of Ray3D, compared with other state-of-the-arts on H36M. All four models are trained
on H36M. First column shows 2D ground-truth poses. Black color denotes left part of person limbs, red color denotes right part of person
limbs. 3D estimation results predicted by VideoPose, RIE, PoseFormer and Ray3D are shown in the second, third, forth and fifth column
respectively. Dashed lines denote 3D ground-truth poses. Solid lines represent the poses estimated by corresponding approaches. Green
and black color lines denotes left part of person limbs, blue and red lines denote right part of person limbs. 17-joint skeleton is visualised.
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Figure 11. Qualitative comparison of Ray3D with VideoPose, RIE and PoseFormer on 3DHP. All four models are trained on 3DHP. First
column shows 2D ground-truth poses. Black color denotes left part of person limbs, red color denotes right part of person limbs. 3D
estimation results predicted by VideoPose, RIE, PoseFormer and Ray3D are shown in the second, third, forth and fifth column respectively.
Dashed lines denote 3D ground-truth poses. Solid lines represent the poses estimated by corresponding approaches. Green and black color
lines denotes left part of person limbs, blue and red lines denote right part of person limbs. 14-joint skeleton is visualised.
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Figure 12. Visualization of generalization of Ray3D, compared with other state-of-the-arts on H36M. All four models are trained on 3DHP.
First column shows 2D ground-truth poses. Black color denotes left part of person limbs, red color denotes right part of person limbs. 3D
estimation results predicted by VideoPose, RIE, PoseFormer and Ray3D are shown in the second, third, forth and fifth column respectively.
Dashed lines denote 3D ground-truth poses. Solid lines represent the poses estimated by corresponding approaches. Green and black color
lines denotes left part of person limbs, blue and red lines denote right part of person limbs. 14-joint skeleton is visualised.
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