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A. Implementation Details
A.1. Loss Functions

Loss functions in deep metric learning can be catego-
rized into pair-based methods and proxy-based methods.
During training, we apply the proposed AVSL framework
to the margin loss [4] and the ProxyAnchor loss [1] as the
representative pair-based and proxy-based methods, respec-
tively, to verify the effectiveness.

Margin loss [4] compresses positive pairs while repelling
negative pairs in the embedding space as follows:

Lmargin =
1

|P|
∑

(x,x+)∈P

[d(x, x+)− (βyx − α)]+

1

|N|
∑

(x,x−)∈N

[(βyx + α)− d(x, x−)]+, (1)

where [·]+ is the hinge function (i.e., [x]+ = max{x, 0})
and d(·, ·) denotes the Euclidean distance. We use P and N
to indicate the set of positive pairs and negative pairs and
| · | to denote the set of the size. To address the variable
intra-class distributions, the margin loss introduce a learn-
able parameter βββ ∈ RC to adaptively control the range of
each class, where C denotes the number of classes. α is a
fixed parameter to enforce a large margin between classes.

ProxyAnchor loss [1] instead constrains the relations be-
tween proxies and samples as follows:

Lpa =
1

|P+|
∑
p∈P+

log

1 +
∑
x∈X+

p

e−α(s(x,p)−δ)

+

1

|P|
∑
p∈P

log

1 +
∑
x∈X−p

eα(s(x,p)+δ)

 , (2)
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where α is a scaling factor, δ is the margin, s(·, ·) is the co-
sine similarity function, P denotes the proxy set, and P+

denotes the positive proxy set where each proxy has at least
one positive samples in the current batch. Also, X+

p in-
cludes the positive samples for a proxy p and X−p contains
the rest negative samples in the batch. However, the origi-
nal form of ProxyAnchor loss (2) is defined with the cosine
similarity, while our proposed AVSL is defined in the con-
text of dissimilarity. To address this, we reformulate the
ProxyAnchor loss as follows:

Lpa =
1

|P+|
∑
p∈P+

log

1 +
∑
x∈X+

p

eα(d(x,p)−(β−τ))

+

1

|P|
∑
p∈P

log

1 +
∑
x∈X−p

e−α(d(x,p)−(β+τ))

 , (3)

where d(·, ·) indicates the dissimilarity and β and τ control
the interclass margin similar to δ in (2).

A.2. Pooling Linearization

To construct the similarity graph, we first employ a CNN
to extract the feature map z = f(x) at each level and then
reduce the feature map to a feature vector using pooling op-
eration as v = g(z). Specifically, we use both max pooling
gmax and average pooling gavg operations following [1] as
follows:

vi = max
h,w

zihw +
1

HW

H∑
h=1

W∑
w=1

zihw. (4)

Finally, we adopt a linear layer h to map v into an embed-
ding space as:

e = h(v) = (h ◦ g)(z). (5)

In addition, we need to compute CAMs [5] as follows:

uihw = h(z·hw) =

c∑
j=1

aijzjhw, (6)
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Figure 1. Visualization of the similarity inference and attribution. We randomly selected two sample pairs from CUB-200-2011 and
Cars196. For each pair of images, we attribute the overall similarity to the specific similarity nodes in an undirected graph. We report the
corresponding values of reliabilities, nodes, and sensitivities under each node. Best viewed in color.

where c is the number of channels and aij indicates the
weights of the linear layer h. In order to maintain the spatial
information of e, we want to ensure the following property:

g(u) = (g ◦ h)(z) = v. (7)

However, the pooling operation and the linear mapping is
not commutative (i.e., g ◦ h 6= h ◦ g) since the pooling op-
eration is a nonlinear function. To address this, we propose
a linearization operation g̃ as follows:

z̃i = g̃(zi) =

{
K · zihw, if zihw = max

kl
zikl

0, Otherwise
(8)

where K = HW
#{zihw|zihw=maxkl zikl} . Thus, we can decom-

pose the pooling operation as follows:

g = gmax + gavg = gavg ◦ g̃ + gavg

= gavg ◦ (g̃ + I), (9)

where I denotes the identity mapping. By employing this
linearization trick, we first preprocess the feature map as
follows:

z̃ = (g̃ + I)(z) = g̃(z) + z. (10)

We then rewrite (5) and (7) as:

e = (h ◦ g)(z) = (h ◦ gavg)(z̃)
gavg(u) = gavg(h(z̃)) = (gavg ◦ h)(z̃),

The gavg and h are now commutative (i.e., gavg ◦ h = h ◦
gavg) so that the CAMs can preserve the spatial information
of the embeddings.

B. Attribution Property
The proposed AVSL can attribute the overall similarity

to specific similarity nodes quantitively as:

d̂ =

r∑
i=1

δ̂Li = 1δ̂δδ
L
= 1PLδδδL + 1(I−PL)W̃Lδ̂δδ

L−1

=

L∑
l=1

r∑
i=1

λliδ
l
i, (11)

where d̂ is the overall similarity, δli is the similarity node,
and λli denotes the sensitivity of the corresponding node.
λli represents the influence of the corresponding node on
the overall similarity. The sensitivities have the following
property:

Property 1. The sum of λli of all nodes is a constant.

Proof. We rewrite (11) as follows:

d̂ =

L∑
l=1

1Λlδδδl, (12)

where Λl = (I−PL)W̃L · · · (I−Pl+1)W̃ l+1Pl, andλλλl =
[λl1 λ

l
1 · · ·λlr] = 1TΛl. Let Λ̃l = (I − PL)W̃L · · · (I −
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Figure 2. Fluctuation of edges during training.

Pl+1)W̃ l+1. Since W̃ l is normalized by row (i.e., W̃ l1 =
1), we can derive that:

(Λl+1 + Λ̃l)1

=(I−PL)W̃L · · · (I−Pl+2)W̃ l+2(
Pl+11 + (I−Pl+1)W̃ l+11

)
=(I−PL)W̃L · · · (I−Pl+2)W̃ l+21

=Λ̃l+11 (13)

Therefore, the sum of λli is computed as:

L∑
l=1

r∑
i=1

λli =

L∑
l=1

1TΛl1

=1T

(
L∑
l=2

Λl1 + Λ̃11

)
=1T Λ̃L1 = 1T1 = r, (14)

where r is the dimension of embeddings.

Property 1 ensures that the absolute value of the sensitive
λli is meaningful across samples and can directly indicate
the significance of the corresponding similarity node when
inferring the overall similarity.

C. More Experimental Results
C.1. Detailed Visualization

We provide more detailed visualization results of the
similarity inferring and attribution. we randomly selected
two sample pairs from CUB-200-2011 [3] and Cars196 [2]
for similarity attribution, as shown in Figure 1. From top to
bottom, we first selected the top-128 reliable nodes with a
high pli among all the 512 nodes and further displayed the
three most similar nodes framed in green dotted boxes and

Table 1. Ablation study about the edge design.

Method R@1 R@2 R@4 R@8

PA 87.7 92.9 95.8 97.9
PA-AVSL (w/o MUS) 91.0 94.6 96.7 98.1
PA-AVSL (γ = 0.50) 91.5 95.0 97.0 98.4
PA-AVSL (γ = 0.95) 91.6 95.2 97.2 98.4

Table 2. Ablation study about the reliability design.

Method R@1 R@2 R@4 R@8

PA 87.7 92.9 95.8 97.9
PA-AVSL (LR) 90.9 94.6 96.6 98.0
PA-AVSL 91.5 95.0 97.0 98.4

the three most dissimilar ones framed in red dotted boxes.
Subsequently, we decompose one unreliable node to the ad-
jacent related nodes. We quantitatively show the reliabilities
pli, similarity nodes δli, and sensitivities λli below each box.

We observe that the similarity nodes with higher sen-
sitivity value λli are more likely positioned in higher lay-
ers, which correspond to clearer concepts such as ”wing”,
”head”, and ”feet” as shown on the left of Figure 1. In addi-
tion, patterns of low-level features are relatively difficult to
recognize. This demonstrates that high-level features tend
to encode object-level concepts while low-level features fo-
cus on pixel-level concepts. In addition, we discover that
nodes and concepts may not correspond to each other one-
to-one. For example, multiple nodes may all focus on the
“wheel” part of cars as shown on the right of Figure 1,
which indicates that concepts extracted by CNNs are not
completely consistent with humans.

C.2. Further Analysis

The strategy of edge construction : Due to the image
noise, computing edges only based on a single sample may
cause large fluctuation. Therefore we propose that edges
should depend on the entire dataset. We adopt the momen-
tum updating strategy to filter the image noise formulated
by Equation 4 in the original paper. We plot the fluctuation
amplitude curves of edges in Figure 2 and see that the pro-
posed momentum updating strategy (MUS) obtains more
stable edges. We also conducted an ablation study to ana-
lyze the influence on the performance. Table 1 demonstrates
the effectiveness of the proposed strategy.

The design of reliability: We conducted an ablation
study about different designs of computing reliability as
shown in Table 2, where “PA-AVSL (LR)” represents learn-
ing the reliability by a fully-connected layer (i.e., ηli =

h(ûli)h(û
′l
i )). The comparison demonstrates that a priori

design is more effective than a learning-based one.

The effectiveness of reliability detection: We show the
distribution of the reliability in Figure 3a and observe that
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only a few significantly unreliable nodes will trigger the
top-down rectification. We further show the distribution of
the coefficient of the sigmoid regression as Equation 5 in
Figure 3b. The sigmoid regression acts like a filter and as-
sign a small number of inaccurate reliability estimation with
small coefficients close to zero.
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