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A. Implementation Details

Visual encoder. On all datasets, we adopt the mmac-
tion2 [10] toolkit. The SlowFast [15] network is used to
extract features from RGB frames for experiments on the
EPIC-Kitchens, CharadesEgo and ActorShift datasets. We
also extract features from the optical flow modality on EPIC-
Kitchens by the slow-only network [15]. The networks are
initialized with Kinetics pre-trained model weights. Such
pre-training on a large dataset is common in domain adapta-
tion, e.g., for images (ImageNet) [7,17,40,41] and videos
(Sports-1M [20], Kinetics [6,9,22,27,34]).

Audio encoder. We adopt a ResNet-18 [19] for all datasets
and initialize the weights from the VGGSound pre-trained
checkpoint [4]. The last residual block and final classifica-
tion layer are further trained on each dataset before generat-
ing pseudo-absent labels and audiovisual fusion as detailed
in Section 3.

Attention module. The attention module consists of eight
transformer encoder layers [13, 14,42] and the parameters
are randomly initialized. The inputs are intermediate audio
features from the audio encoder (conv3 of the ResNet-18
network). The output of the class token passes through one
fully connected layer to obtain the attention vector for the
visual encoder.

Audio-infused recognizer. We use three transformer en-
coder layers with the same architecture as in [14]. The
parameters are also randomly initialized. The sequence di-
mension D is set to 512 and each layer has 8 self-attention
heads.

Training objective. On EPIC-Kitchens, We use a standard
softmax cross-entropy loss as £ in Eq. 2 and Eq. 8. Since
CharadesEgo aims for multi-label classification, the sigmoid
cross-entropy loss is adopted as the £ in Eq. 2 and Eq. 8.

Inference. When using a single modality, the output from
the activity recognizer R(-) is directly used as the final recog-
nition prediction. On EPIC-Kitchens [27], when using both
RGB and optical flow, we average the predictions from the
two modalities as the final classification result, following
prior works [22,27,34].
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EPIC-Kitchens CharadesEgo
Labels for Target Domain Top-1 (%) 1 mAP (%) 1
Visual-based hard pseudo labels 51.7 23.9
Visual-based pseudo-absent labels 53.8 24.3
Audio-based hard pseudo labels 47.6 22.8
Audio-based pseudo-absent labels 55.7 25.0

Table 5. Ablation of pseudo-absent labels. Using the pseudo-
absent labels predicted by audio for absent-activity learning is more
effective than the visual counterpart. Hard pseudo labels from
either modality results in inferior performance.

B. Audible Activities on CharadesEgo

The 13 audible activities we select for the ablation in
Table 3 are: someone is laughing, someone is cooking some-
thing, laughing at television, closing a door, talking on a
phone/camera, closing a window, closing a refrigerator,
washing some clothes, watching television, washing their
hands, opening a window, opening a door, someone is sneez-

ing.

C. Ablation of Pseudo-Absent Labels

Audio vs. visual pseudo labels. We introduce absent-
activity learning in Section 3 to increase the discriminability
of our audio-adaptive encoder in the target domain. The
pseudo-absent labels are obtained from the audio encoder
pre-trained on the source domain. We validate the effec-
tiveness of this setting in Table 5. Here, we consider three
alternatives. First, using a pre-trained visual encoder on
the source domain to get “Visual-based pseudo-absent la-
bels” or “Visual-based hard pseudo labels”. In the latter a
one-hot pseudo label for each video is obtained by taking
the class with the highest probability. We can also create
“Audio-based hard pseudo labels” in the same way from the
pre-trained audio encoder. Note that when using the hard
pseudo labels, we adopt a standard classification loss, i.e.
softmax cross-entropy or sigmoid cross-entropy loss, for
unlabeled target domain data, instead of the loss for absent-
activity learning.

Both visual-based pseudo-absent and hard pseudo labels
result in inferior performance, since the visual activity ap-
pearance has larger variance across domains than audio and



Value of » Top-1 (%) 1
1 52.3
2 54.3
3 55.7
4 55.2
5 54.1
6 51.9

Table 6. Effect of r for audio-based pseudo-absent labels on single-
label classification with EPIC-Kitchens. While a small r provides
little supervision in the target domain, a large r also degrades the
performance due to the unreliable predictions for silent activities.
=3 results in the best performance.

Value of v mAP (%) 1

0.03 24.5
0.04 24.8
0.05 25.0
0.06 24.7
0.08 24.5
0.1 24.1

Table 7. Effect of ~ for audio-based pseudo-absent labels on multi-
label classification with CharadesEgo. v=0.05 results in the best
performance.

the visual encoder suffers from distribution shift. Since the
audio predictions are unreliable for silent activities, using
the hard pseudo labels from audio is worse than visual-based
pseudo-labels. By contrast, our audio-based pseudo-absent
labels provide reliable supervisory signals for the visual
encoder adapting to the domain shift.

Effect of . When we generate pseudo-absent labels for
single-label classification on EPIC-Kitchens, r classes with
the lowest audio-based probabilities are treated as the absent
activities to train our audio-adaptive encoder. In all other
experiments r=3 is used. We illustrate the effect of r in
Table 6. When r equals 1, little supervision is provided
for training the visual encoder in the target domain so that
its adaptation ability degrades. With a large r, the pseudo-
absent labels are noisy, since the audio predictions for silent
activities are unreliable. Overall, we consider r=3 to be the
best trade-off.

Effect of v. For the multi-label classification, we assume
the (1 — o)y percent videos with the lowest audio-based
probabilities do not contain class k, where «y is the per-
centage of videos containing class & in the labeled source
domain. Then, we obtain the pseudo-absent label for each
video according to this rule. Here, we study the effect of v in
Table 7. Similar to the effect of r, v=0.05 delivers the best
result, while a smaller or larger ~ causes the performance to
degrade slightly.

Audio variance across domains. The audio modality is

EPIC-Kitchens CharadesEgo
Number of Clusters Top-1 (%) 1 mAP (%) 1
4 52.9 23.5
5 53.4 23.9
6 53.8 24.2
7 54.3 24.5
8 53.9 24.1
9 53.6 23.8
10 52.7 23.3
Elbow method [37] 55.7 25.0

Table 8. Effect of Elbow method on our audio-adaptive encoder.
Using a fixed number of clusters results in inferior performance
compared to the Elbow method.

more domain-invariant for distinguishing true negatives.
When predicting absent activities in the source domain, both
audio and visual classifiers achieve a high true negative rate
on EPIC-Kitchens of 96.1% and 97.2%. In the target do-
main the audio remains robust with 95.6% true negative rate,
while that of the visual classifier degrades to 86.7%.

D. Ablation of Audio-Balanced Learning

For our audio-balanced learning, we use audio features to
cluster the samples inside each class in the source domain,
and each cluster is treated as one type of interaction with
objects or environments.

Effect of Elbow method. The Elbow method [37] is
adopted for determining the number of clusters for each class.
It gives 5 to 12 clusters per class on both EPIC-Kitchens
and CharadesEgo. Here, we compare its performance with
a fixed number of clusters for all classes in Table 8. The
Elbow method [37] results in the best performance. The rea-
son is that some activity classes do not have large variance
in the interactions, e.g., pouring. For such an activity class,
when using a large number of clusters, some clusters may
contain samples with similar activity appearance to those in
some other clusters of this class. Then, with audio-balanced
learning, the visual encoder may pay more attention to these
‘redundant’ clusters during training, as they contain less sam-
ples, and over-fit to the samples in these clusters. Besides,
if all the classes adopt a small number of clusters, some
rare interactions with objects or environments in the source
domain cannot be well learned and thus the overall accuracy
of the model degrades on the target domain.

Audio vs. visual features for clustering. As an alternative
to our audio-based clustering in Section 3, we could instead
rely on visual features for clustering. However, since visual
features are sensitive to appearance changes, such as the
background color, we observe some of the resulting clus-
ters may mainly contain videos with similar backgrounds,
rather than a specific type of interaction. We compare the
performance per modality in Table 9. Clustering by audio
outperforms the visual counterpart by 2.3% top-1 accuracy



EPIC-Kitchens CharadesEgo

Modality ~ Top-1 (%) 1 mAP (%) 1
Visual 53.4 24.1
Audio 55.7 25.0

Table 9. Audio vs. visual features for clustering in the audio-
balanced learning for our audio-adaptive encoder. Using audio
features is preferred over the visual features and delivers 2.3%
top-1 accuracy and 0.9% mAP advantage.
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Figure 7. Audio vs. visual features for long-tail on EPIC-
Kitchens. Clustering by audio features to identify rare and frequent
activities for balanced learning is preferred over visual features
under semantic distribution shift.

on EPIC-Kitchens and 0.9% mAP on CharadesEgo.

We also show the difference in performance towards rare
activities in EPIC-Kitchens when using visual-based cluster-
ing in Figure 7. Using audio for clustering delivers higher
accuracy towards rare activities than the visual counterpart.
We also observe that clustering by the audio modality is bet-
ter than clustering by visual features on frequent activities.
This is because the model with visual clustering may focus
more on rare differences in backgrounds that have no effect
on the activity class. We conclude that forcing the model
to learn in a balanced way towards different types of inter-
actions clustered by the audio can better handle semantic
distribution shift than the visual counterpart.
Visualizations of clusters. Some examples from the clus-
ters are provided in the supplementary video. We observe
that each cluster by the audio features tends to contain sim-
ilar objects or environments the actors interact with. For
example, for the putting activity in EPIC-Kitchens, one clus-
ter has a bias towards food, one consists mainly of plates
and another one prefers kitchen utensils. Similar phenom-
ena also exist in CharadesEgo. For the eating activity, the
actors are commonly watching television in the living room
when eating in one cluster. Kitchens or bedrooms with silent
environments are frequent sites for eating in another cluster.
There is also one cluster in which there are several people
chatting in each video while the actor of interest is eating.

EPIC-Kitchens CharadesEgo
Source of class token Top-1 (%) mAP (%) T
Audio classification prediction 57.5 25.6
Audio features 57.8 25.6
Audio features® 55.9 25.2
Activity sound feature vectors 59.2 26.3

T Only training the audio-infused activity recognizer.

Table 10. Audio-adaptive class token ablation. Obtaining the
audio-adaptive class token from activity sound feature vectors is
preferred over using the original audio feature vector or classifica-
tion prediction from the audio encoder as the class token.

We conclude that when finding rare activities by clustering,
using audio features is reliable.

E. Ablation of Audio-Infused Recognizer

Audio-adaptive class token. In Section 3, we obtain the
audio-adaptive class token from a series of activity sound
feature vectors, considering both audio and visual features.
Alternatively, we can directly conduct global average pool-
ing on the audio features from the audio encoder and treat
the resulting feature vector as the class token. Then, the
audio-infused activity recognizer can be jointly trained with
the last residual block of the audio encoder. The perfor-
mance comparison is shown in Table 10. Since joint training
includes more parameters than training the recognizer only,
the model suffers from over-fitting [44] and results in 1.4%
top-1 accuracy and 0.7% mAP drops, compared to using
activity sound feature vectors. However, if we fix the au-
dio encoder and only train the recognizer, the performance
degrades dramatically. This is expected as audio and vi-
sual features come from different feature distributions and
cannot ensure effective audio-visual interaction by the atten-
tion inside the recognizer. We conclude our audio-adaptive
class token from the activity sound feature vectors is supe-
rior compared to the original audio features from the audio
encoder.

Recognizer vs. simple classifier. To further justify our
audio-infused recognizer, we test an alternative classifier
that uses the audio-attention weights h concatenated with
the visual feature as input to a fully connected layer. It scores
55.9% top-1 accuracy on EPIC-Kitchens and 24.8% mAP
on CharadesEgo. Worse than our 59.2% and 26.3%.

F. Effect of Depth in Transformer Modules

Attention module. Our attention module consists of eight
transformer encoder layers. With more layers, the module
may suffer from over-fitting. By contrast, only using a few
layers will lead to under-fitting. We study the effect of depth
on our audio-adaptive encoder by setting it in the range of
[5,12], and the results on EPIC-Kitchens with RGB and



Modality

EPIC-Kitchen Activity Recognition Across Domains

Method RGB Flow Audio D2—Dl D3—Dl Dl1—D2 D3—D2 DI—D3 D2—D3 Mean
This paper v 37.2 38.4 40.7 447 46.0 47.0 423
I3D Architecture

Munro and Damen [27] v v 48.2 50.9 49.5 56.1 44.1 52.7 50.3
Kim et al. [22] v v 49.5 51.5 50.3 56.3 46.3 52.0 51.0
Song et al. [34] v v 49.0 52.6 52.0 55.6 45.5 52.5 51.2
This paper v 44.5 447 50.8 55.3 42.1 50.2 47.9
This paper v v 48.7 48.3 52.3 60.9 49.2 53.1 52.1
This paper v 38.1 37.8 39.2 479 42.1 41.8 41.1
This paper v v 43.7 42.6 45.7 50.2 43.8 52.3 46.4
This paper v v 49.5 43.5 49.2 54.6 46.6 50.0 48.9
This paper v v v 51.9 48.7 53.2 63.2 52.1 55.5 54.1
SlowFast Architecture

This paper v 48.5 49.2 50.4 54.1 44.1 52.8 49.8
This paper v 52.4 51.1 51.8 559 45.7 53.6 51.8
This paper v v 50.8 51.5 52.7 60.7 484 57.7 53.6
This paper v v 53.9 54.3 53.5 58.7 47.9 55.2 53.9
This paper v v 57.9 55.9 58.4 64.3 54.2 64.3 59.2
This paper v v v 59.3 59.1 59.5 69.1 54.8 64.3 61.0

Table 13. Modality ablation under scenery shift on EPIC-Kitchens for the unsupervised domain adaptation setting. Relying on either
audio or visual modality results in inferior performance, while our audio-adaptive models achieve state-of-the-art accuracy.

Depth  Top-1 (%) 1

5 55.0
6 553
7 553
8 55.7
9 55.5
10 55.3
11 55.2
12 54.9

Table 11. Effect of depth for the audio-adaptive encoder on EPIC-
Kitchens. The performance is not very sensitive to the depth and
using 8 layers results in the best performance.

Depth  Top-1 (%) 1

1 56.8
2 573
3 59.2
4 59.0
5 58.4
6 58.1

Table 12. Effect of depth for the audio-infused recognizer on
EPIC-Kitchens. Increasing depth to 3 layers is effective, then
performance plateaus.

audio modalities are shown in Table 11. Performance is not
very sensitive to the depth, using 8 layers represents the best
empirical trade-off.

Audio-infused recognizer. Our audio-infused recognizer
contains 3 transformer layers. Similar to the attention mod-
ule, more layers lead to over-fitting while less layers result in
under-fitting. We study the effect of depth on EPIC-Kitchens

with RGB and audio modalities and the results are shown in
Table 12. Increasing the depth to 3 layers is effective, then
performance plateaus.

G. Modality Ablation on EPIC-Kitchens

We provide more modality-combinations in Table 13. The
audio encoder alone can achieve only 42.3% top-1 accuracy,
since it cannot predict accurately on silent activities. We also
consider using the visual modalities only, i.e. RGB and opti-
cal flow, and modify our approach correspondingly. To be
specific, the pseudo-absent labels are determined by the pre-
trained visual encoder in the source domain. Visual features
are used for clustering in the audio-balanced learning as well
as generating the attention for themselves. The activity rec-
ognizer also takes visual features only as inputs along with a
learnable class token as in [14]. The visual-only versions of
our approach achieve inferior performance since the activity
appearance suffers from large variances under domain shift.
However, our audio-adaptive model with either RGB or opti-
cal flow modality delivers competitive accuracy with the aid
of the domain-invariant information within sound.

H. Additional Comparison on CharadesEgo

Li et al. recently proposed a supervised-only ap-
proach [26] for model pre-training to be better suited for
downstream tasks with egocentric videos. We find our ap-
proach profits from their features as well. On its own the
approach from Li et al. achieves 30.6 mAP on CharadesEgo.
Combined with our audio-based attention and audio-infused
recognizer, we improve this to 31.9 mAP.



Method Top-1 (%) 1
Sight or Sound

Visual-only 48.0
Audio-only 423
Within-domain fusion

Late fusion 47.2
Lee et al. [25] 50.8
Tian et al. [38] 50.0
Nagrani et al. [28] 51.1
Gabeur et al. [16] 51.3
Cross-domain fusion

This paper 59.2

Table 14. Fusion benefit. Experiments performed on EPIC-
Kitchens with the same RGB and audio modalities. Although utiliz-
ing within-domain fusion methods can achieve good performance,
our approach provides more effective cross-modal interaction under
domain shift.

I. Fusion Benefit

We also compare our full audio-adaptive model with al-
ternative audio-visual fusion approaches originally intended
for within-domain activity recognition [16, 25, 28, 38] on
EPIC-Kitchens. We use either publicly available implemen-
tations or re-implement ourselves and let them all use the
same inputs, i.e., the features as outputted by the visual and
audio encoders. The results are shown in Table 14. We
denote simple averaging of the classification predictions
from both encoders by “Late fusion”. As most activities
are silent, the audio predictions are unreliable and degrade
the performance when combined with visual predictions via
late fusion. Although the cross-modal interaction methods
proposed in [16,25,28,38] are designed for within-domain
activity recognition, they still achieve good performance
compared to a visual-only encoder with 48.0% top-1 accu-
racy. This is expected as several samples in the target domain
may not contain a large domain shift, so the audio-visual
correspondences from the source domain will also be encoun-
tered in the target domain. Our full audio-adaptive model
allows for an even more effective cross-modal interaction
under domain shift. This is because our audio-adaptive en-
coder and audio-infused recognizer alleviate the dependence
on searching cross-modal correspondences for classification
and instead rely on the domain-invariant activity information
within sound to obtain a more discriminative visual feature
representation in the target domain.

J. Audio Quality Assumption

Throughout our work, we assume the audio track accom-
panying a video is of decent quality. To measure the impact
of audio quality, we mix the audio track of each video with
the audio from another randomly sampled video. In Figure 8
we vary the noise ratio in train and test and measure the top-1
accuracy (%) on EPIC-Kitchens. Our model remains robust
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Figure 8. Impact of audio quality on EPIC-Kitchens. Our model
remains robust up to 10% irrelevant sound during training and/or
testing. With more noise, especially during training, performance
starts to suffer.

Source Domain

Figure 9. Example activities from the ActorShift dataset.

up to 10% irrelevant sound during training and/or testing.
With more noise, especially during training, performance
starts to suffer.

K. Details of ActorShift Dataset

When constructing the dataset, we first select 7 Kinet-
ics classes for which there are dozens of videos of animals
performing these actions on YouTube. The videos are col-
lected by querying YouTube with ‘animals’ prepended to
the verb of the action class, e.g., “animals sleeping”. We
discard videos with music and only keep those with the
original animal sounds. Videos with the animal out-of-view
are also rejected. The final dataset covers a wide range of
animal species including dog, deer, koala, cat, alpaca, lion,
tiger, kangaroo, loris, raccoon, rabbit, elephant, monkey,
panda, horse, duck, bird, snail, cow, chinchilla, marmot,
lizard, hedgehog, bat, tortoise, squirrel, giraffe, goose and
fox. Some examples are shown in Figure 9.



L. Supplementary Video

We provide more visualizations in the supplementary
video on our project page: https://xiaobail2l7.
github.io/DomainAdaptation. It includes exam-
ples about the pseudo-absent labels for absent-activity learn-
ing and the clusters generated by audio features for audio-
balanced learning. We also compare the predictions between
a visual-only encoder and our audio-adaptive encoder, as
well as the benefit brought by our audio-infused recognizer.
Some failure cases on the ActorShift dataset are also shown,
where the domain shift exists in both the visual and audio
modalities.


https://xiaobai1217.github.io/DomainAdaptation
https://xiaobai1217.github.io/DomainAdaptation
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