
k-1

k-2

0

1

2 3 k

Output	node

Operation	node

Input	node

0

1

Figure 4. Description of DARTS search space.

APPENDIX:
A. Search Spaces and Experimental Setting

In our experiments, we consider two scenarios, NAS
benchmark datasets and the common DARTS space, to ana-
lyze the proposed framework FreeDARTS. The high compu-
tational cost in evaluation is a major obstacle when analyzing
and reproducing differentiable NAS methods. To alleviate
this issue, several benchmark datasets have been recently
published [16, 40, 48, 51], where the ground-truth for all can-
didate architectures in the benchmark datasets is known. The
NAS-Bench-201 dataset [16] is a popular NAS benchmark
dataset to analyze differentiable NAS methods. The search
space in NAS-Bench-201 contains four nodes with five asso-
ciated operations, resulting in 15,625 cell candidates, where
the performance of CIFAR-100, CIFAR-100, and ImageNet
for all architectures in this search space are reported. The
NAS-Bench-101 [48] is another famous NAS benchmark
dataset, which is much larger than NAS-Bench-201 while
only the CIFAR-10 performance for all architectures are
reported. More important, the architectures in NAS-Bench-
101 contain different number of nodes, which makes it im-
possible to build a generalized supernet for one-shot nor
differential NAS methods. To leverage the NAS-Bench-101
for analyzing the differentiable NAS methods, NAS-Bench-
1shot1 [51] builds from the NAS-Bench-101 benchmark
dataset by dividing all architectures in NAS-Bench-101 into
3 different unified cell-based search spaces, which contain
6240, 29160, and 363648 architectures, respectively. The
architectures in each search space have the same number of
nodes and connections, making the differentiable NAS could
be directly applied to each search space. We choose the third
search space in NAS-Bench-1shot1 since it is much more
complicated than the remaining two search spaces.

As to the most common search space in NAS, DARTS
needs to search for two types of cells: a normal cell αnormal

and a reduction cell αreduce. Cell structures are repeatedly
stacked to form the final CNN structure. There are only two
reduction cells in the final CNN structure, located in the 1/3
and 2/3 depths of the network. There are seven nodes in each
cell: two input nodes, four operation nodes, and one output
node. Each operation node selects two of the previous nodes’
output as input nodes in this search space. Each input node
will select one operation from |O| = 8 candidate operations.

Fig. 4 describes a unified convolutional search space in
DARTS. The common practice in DARTS is to search on
CIFAR-10, and the best searched cell structures are directly
transferred to CIFAR-100 and ImageNet. The experimental
settings on DARTS space in this paper are following the
common DARTS setting. We conduct the architecture search
with 5 different random seeds, and the best one is selected
after the evaluation on CIFAR-10, which is then transferred
to CIFAR-100 and ImageNet. The architecture evaluation
for CIFAR-10 and CIFAR-100 are on a single GPU with
batch size 96, while for ImageNet is performed on 2 GPUs.
In addition, we adjust the number of filter in the evaluation
to make the model sizes similar for fair comparison. We use
a linear learning rate scheduler with following PDART [10]
and PCDARTS [47] to use a smaller slope in the last five
epochs for the architecture evaluation on ImageNet.

B. Ablation Study on the Saliency Metrics

In our BaLeNAS-TF, we utilize three train-free saliency
metrics, SNIP, GraSP, and Synflow, as proxies for the archi-
tecture selection from the optimized distribution. In Table
4, we considered different number of sample size for our
BaLeNAS-TF when combined with the three saliency met-
rics. As shown in Table 4, combined with different train-free
proxies, our BaLeNAS-TF achieve higher performance than
the original BaLeNAS when the sample size is 10. However,
when increasing the sample size, we can see a sharp drop
for BaLeNAS-TF with SNIP and GraSP, showing the two
metrics are not appropriate metrics to for the architecture
selection. On the contrary, the SynFlow, also adopted by
our BaLeNAS-TF, shows a clear improvement with the sam-
ple size from 10 to 100, implying that this proxies is more
reliable for the architecture selection.

C. Ablation Study of MCMC on NAS-Bench-201

As we described in Section 3.2, one key additional hy-
perparameter in BaLeNAS is the sampling number M in
MCMC, and this subsection investigates how this hyperpa-
rameter affects the performance of BaLeNAS. Table 5 sum-
marizes the performance our BaLeNAS (2nd) with different
number of MCMC sampling. As shown, our BaLeNAS is
very robust to the number of MCMC sampling, where BaLe-
NAS achieves excellent results under different scenarios,
outperforming most existing NAS baselines. An interest-
ing observation is that the performance of BaLeNAS in-
crease with multiple samplings whenM < 4 in MCMC, and
M = 3 achieves the best performance. Theorem 1 in [22]
points out that VAdam with M > 1 will converge fast while
might result in slightly less exploration. The exploration and
exploitation can be balanced by the MCMC sample size. A
detailed explanation can be found in the Section 3.4 of [22].

Table 4. Zero-cost NAS and FreeDARTS with different saliency metrics on NAS-Bench-201.

Method Sample CIFAR-10 CIFAR-100 ImageNet-16-120
Size Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

BaLeNAS - 91.32±0.09 94.02±0.14 71.53±0.08 71.93±0.27 45.39±0.17 45.48±0.39

BaLeNAS with SNIP
10 90.95±0.39 93.85±0.22 71.37±0.35 71.48±0.52 46.04±0.47 46.03±0.41
50 88.23±2.18 92.56±1.18 68.26±2.74 64.58±3.18 27.13±9.20 35.23±10.3
100 86.04±0.00 91.37±0.00 65.52±0.00 67.77±0.00 36.33±0.00 24.97±0.00

BaLeNAS with Grasp
10 91.10±0.23 93.94±0.05 72.03±0.53 72.00±0.06 45.26±0.56 44.67±1.54
50 90.56±0.76 93.72±0.16 71.52±1.03 70.62±1.43 45.01±0.81 44.92±1.64
100 89.01±0.78 92.32±1.25 67.86±2.61 67.32±1.85 40.29±3.91 39.84±3.43

BaLeNAS with SynFlow
10 91.52±0.04 94.08±0.13 72.37±0.53 72.55±0.42 45.34±0.23 45.82±0.30
50 91.52±0.04 94.33±0.03 72.67±0.41 72.95±0.28 46.14±0.23 46.54±0.36
100 91.52±0.04 94.33±0.03 72.67±0.41 72.95±0.28 46.14±0.23 46.54±0.36

Table 5. Ablation study on the MCMC sampling size on NAS-Bench-201.

MCMC number CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

M = 1 90.52±0.09 93.33±0.04 70.67±0.08 70.95±0.27 44.39±0.47 44.32±0.39
M = 2 90.71±0.12 93.75±0.87 71.25±0.92 71.43±0.45 44.63±0.55 45.05±0.95
M = 3 91.32±0.09 94.02±0.14 71.53±0.08 71.93±0.27 45.39±0.17 45.48±0.39
M = 4 90.03±0.96 93.04±1.09 68.80±1.46 69.20±1.86 43.09±2.93 43.21±2.88
Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66
DARTS (2nd) 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
optimal 91.61 94.37 73.49 73.51 46.77 47.31

c_{k-2}

0

skip_connect 1
sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

dil_conv_3x3

2

sep_conv_3x3

sep_conv_3x3 c_{k}
sep_conv_3x3

sep_conv_3x3

(a) Normal cell of BaLeNAS

c_{k-2}

0

avg_pool_3x3
1

avg_pool_3x3

2max_pool_3x3

c_{k-1}

sep_conv_3x3

3

max_pool_3x3

dil_conv_3x3
c_{k}

dil_conv_3x3 dil_conv_3x3

(b) Reduction cell of BaLeNAS

c_{k-2}
0

sep_conv_3x3

1
skip_connect

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

dil_conv_3x3

dil_conv_3x3 c_{k}

(c) Normal cell of BaLeNAS w/o

c_{k-2}
0

avg_pool_3x3

1
max_pool_3x3

2

dil_conv_3x3 3

avg_pool_3x3

c_{k-1}

dil_conv_3x3

dil_conv_3x3

avg_pool_3x3

dil_conv_3x3 c_{k}

(d) Reduction cell of BaLeNAS w/o

Figure 5. Examples of searched cells by BaLeNAS and BaLeNAS
without regularizatons (BaLeNAS w/o).

D. Searched Architectures Visualization

Fig.5 plots the searched architectures on DARTS space
by BaLeNAS and BaLeNAS-TF. We could observe that, our

BaLeNAS tends to obtain “shallow” architectures, which
is also observed by several existing works [34, 54]. As
we know the shallow architectures are easier to train and
usually perform excellently in the small dataset, implying
that the differentiable NAS methods prefer those “shallow”
architectures if we only utilize the validation accuracy as
the indicator. However, the performance of those “shallow”
architectures on the large dataset is not as competitive as
on the small dataset, indicating poor transferability. These
results suggest the importance of introducing other indicator
to differentiable NAS for architecture search, especially in
the complicated real-world search space, to help finding
more robust architectures. In contrast, as shown in Fig.5, our
BaLeNAS-TF can found “deeper” architectures as it does
not only rely on the validation accuracy for the architecture,
but also another saliency metric. We can find a similar
phenomenon in the NAS-Bench-201 search space that, even
though DrNAS achieves near-optimal results on CIFAR-10,
while our BaLeNAS-TF outperform it on the larger dataset.

Related Works

Unlike directly optimizing the architecture parameters,
several recent works formulate the differentiable NAS as a
distribution learning problem by relaxing architecture param-

eters into different distributions. SNAS [46] and GDAS [15]
formulate the architecture as a discrete distribution with
concrete relaxation and utilize the Gumbel-softmax trick to
obtain the discrete architecture. DrNAS [9] treats the con-
tinuous architecture parameters as random variables being
modeled by a learnable Dirichlet distribution. This distribu-
tion is parameterized by a concentration parameter β, which
controls the sampling behavior and is optimized via path-
wise derivative estimators [20]. Zheng et al. [57] consider
the whole search space as a joint multinomial distribution
and learn the probabilities of candidate operations among
all nodes based on the multinomial distribution learning. A
common point in these previous methods is that they for-
mulate the architecture parameters as simple distributions
in which only one parameter needs to be learned. In this
way, these learning paradigms are easy to fit with existing
DARTS codebases.

Rather than considering the above distributions, this pa-
per considers the more general Gaussian distributions for
the architecture parameters. By leveraging natural-gradient
variational inference (NGVI), the architecture parameter dis-
tribution could be learned with by only updating a natural
parameter λ during the search. The most relevant work to
ours is BayesNAS [58], which also considers the Bayesian
learning approach for neural architecture search. BayesNAS
models the architecture parameters with hierarchical auto-
matic relevance determination (HARD) priors, while which
casts NAS as a model compression problem. The architec-
ture parameters is formulated as q(θ) ∼ N (µ, ψ−1), where
ψ is a hyperparameter to tune rather than a parameter to
learn. Furthermore, not only the architecture parameters
are formulated as distributions, the supernet in BayesNAS
is also formulated as a Bayesian Neural Network, which is
hard to train and BayesNAS could only train the supernet
for one epoch. Differently, our BaLeNAS only replaces the
Adam optimizer with the Variational Adam optimizer for
architecture optimization in the DARTS codebase, and keeps
the supernet the same. In this way, our BaLeNAS is easy
to be applied to most existing differentiable NAS codebases
with minimal modifications.

	. Introduction
	. Preliminaries
	. Differentiable Architecture Search
	. Bayesian Deep Learning
	. Training Free Proxies for NAS

	. The Proposed Method: BaLeNAS
	. Formulating NAS as Distribution Learning
	. Natural-Gradient VI for NAS
	. Architecture Selecting from the Distribution

	. Experiments and Results
	. Experiments on Benchmark Datasets
	Reproducible Comparison on NAS Benchmarks
	Ablation Study on the Architecture Selection

	. Experiments on DARTS Search Space
	Search Results on CIFAR-10
	Transferability Results Analysis
	Analysis on the Effect of Exploration
	Tracking of the Hessian norm

	. Conclusion

