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1. Quantitative analysis

1.1. Analysis of hyper-parameters

As the spatial correspondence problem indicated in [3],
if the deformable convolution is applied to the lower or mid-
dle layers, the spatial structures are susceptible to fluctu-
ation [4]. To overcome this problem, we propose the re-
gional restriction of learned offsets to stabilize the training
of our early-stage and four-stage Deformable Patch Embed-
ding (DPE) module. Table 1 shows that r=4 has a better
result. Thus, the constraint r applied in the offset prediction
module is set as 4 in our experiments.

To investigate the effect of various hyper-parameters
in the proposed Trans4PASS framework, we analyze the
weight α and the temperature T as shown in Fig. 1a and
Fig. 1b. The weight α is used to combine the Mutual Pro-
totypical Adaptation (MPA) loss and the source- and target
segmentation losses. As α decreases from 0.1 to 0, we set
the temperature T =35 in the MPA loss and evaluate the
mIoU(%) results on the target (DensePASS [9]) dataset. If
α=0, the final loss is equivalent to that of the SSL-based
method, i.e., the MPA loss is excluded. When α=0.001 for
combining both, MPA and SSL, Trans4PASS obtains a bet-
ter performance.

Apart from the combination weight α, we further inves-
tigate the effect of the temperature T , which is used in the
MPA loss. As shown in Fig. 1b, the performance is not sen-
sitive to the distillation temperature, which illustrates the
robustness of our MPA method. Nevertheless, we found
that MPA performs better when the temperature is lower, so
T =20 is set as the default setting in our experiments.

1.2. Computational complexity

We reported the complexity of Deformable Patch Em-
bedding (DPE) and Deformable MLP (DMLP) and com-
pared with other methods on DensePASS in Table 2. The
results indicate that our methods have significant improve-
ment with the same order of complexity.

None r=1 r=2 r=4 r=8

mIoU(%) 45.74 44.51 45.59 45.89 45.57
Table 1. Effect of regional restriction (r) on DensePASS.
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Figure 1: Analysis of hyper-parameters. The performance
(mIoU) is evaluated in the outdoor target dataset (DensePASS).

PE[79] DPT[8] DPE CycleMLP[6] ASMLP[43] DMLP

GFLOPs 0.16 0.36 7.65 1.25 4.83 3.45
#Params(M) 0.01 0.02 2.90 0.45 1.04 0.79

mIoU(%) 45.14 45.89 36.50 40.16 42.05 45.89

Table 2. Computational complexity of DPE and DMLP.
GFLOPs are calculated @512×512.

1.3. Detailed results in outdoor scenarios

Table 3 shows the per-class IoU results on DensePASS
dataset. The first group of experiments is conducted to com-
pare the performance of different backbones in P2PDA [14]
method. Additionally, the adaptation process of the original
FANet [7] and DANet [6] are shown in more detail, i.e., the
performance of the source-only model and that without us-
ing the SSL-based method are included. The experiments
in the second and third groups are based on Trans4PASS-T
and -S model, respectively. As shown in the third group,
Trans4PASS-S obtains new state-off-the-art performance in
mean IoU (56.38%). In addition, it achieves top scores on
7 out of 19 classes in per-class IoU, including pole, traffic
light, person, car, truck, motorcycle, and bicycle.

1.4. Detailed results in indoor scenarios

Apart from the detailed results in outdoor scenarios,
per-class results on the outdoor Stanford2D3D-Panoramic
dataset [1] are shown in Table 4. The experiments are con-
ducted on the fold-1 dataset setting of Stanford2D3D [1].
Our proposed framework with the Trans4PASS-S backbone



and the MPA method obtains the best performance in the
domain adaptation setting, reaching 52.15% in mean IoU.
It also achieves best IoU scores on 7 out of 13 classes
in the indoor scenario, especially on the ceiling, column,
and door categories. In the supervised learning setting,
Trans4PASS-S surpasses the CNN-based DANet by a large
margin, achieving a score of 53.31% in mean IoU. Besides,
its performance in per-class IoU is better than DANet in al-
most all categories, which lacks the capacity to learn long-
range contexts and distortion-aware features in panoramas.

The comparison of segmentation performance with state-
of-the-art methods on Stanford2D3D-Panoramic dataset is
shown in Table 5. Since the results of these experi-
ments are based on the average of all 3 data-splitting set-
tings, we show the results of each individual split setting
and its per-class IoU in detail (in gray). The small ver-
sion of the Trans4PASS backbone is used in this experi-
ment. Compared with the previous best fully-supervised
method equipped with ResNet-101, Trans4PASS-S has
much fewer parameters and is an order of magnitude
smaller than ResNet-101. Still, our method obtains the new
state-of-the-art performance on Stanford2D3D-Panoramic
dataset, reaching 53.0% in mean IoU. Within all 13 classes,
Trans4PASS obtains a total of 8 best per-class IoUs. In the
setting of unsupervised domain adaptation (UDA), our pro-
posed method achieves +2.7% in the average of three folds,
and +3.1% when using multi-scale evaluation. It obtains
best per-class scores on 9 out of 13 categories.

2. Qualitative analysis
2.1. More visualizations in indoor scenarios

Similar to the visualization in outdoor scenarios, more
qualitative comparisons between the baseline and the pro-
posed Trans4PASS are displayed in Fig. 2, which are from
the evaluation set of Stanford2D3D-Panoramic [1] in the
fold-1 setting. In Fig. 2(a), Trans4PASS can produce higher
quality segmentation results in those categories highlighted
by the black dashed rectangles, such as column and book-
case categories, while the baseline model can hardly iden-
tify these severely deformed objects. In Fig. 2(b), the doors
are incorrectly segmented as part of the wall by the baseline
model, and the correct segmentation results can be gener-
ated by our Trans4PASS model.

2.2. More visualizations in outdoor scenarios

To fully demonstrate the effect of Trans4PASS in dealing
with image distortions and object deformations, more qual-
itative comparisons between the baseline and the proposed
Trans4PASS are displayed in Fig. 3, which are generated
from the evaluation set of DensePASS dataset [9]. Specif-
ically, Trans4PASS can better classify and segment de-
formed foreground objects with accurate boundaries, such
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Figure 2: Qualitative comparisons in indoor scenarios.

as the segmentation results of cars and trucks highlighted
by the blue dashed rectangles in Fig. 3(a), while the baseline
model without deformable PE and deformable MLP mod-
ules is likely to be confused or fail in these categories. Apart
from the foreground object, the ultra-wide arranged back-
ground is particularly distorted and challenging. Thanks to
the two distortion-aware modules, our Trans4PASS yields
high-quality segmentation results in these categories, e.g.,
terrain, sidewalk, and wall in Fig. 3(b).

3. Broader Impact.
This work promotes panoramic semantic segmentation

of indoor and outdoor scenes, which benefits ultra-wide
scene understanding. However, the proposed method has
not been verified in practical applications such as those in
intelligent vehicles and mobility assistive systems. As the
experiments are conducted based on the referred datasets,
there are still data biases in different test fields. If the
learned model is directly applied to real scenarios, it may
cause negative social impacts such as less reliable decision
with less accurate segmentation, which should be consid-
ered in the downstream applications.
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FANet - 26.90 62.98 10.64 72.41 7.80 20.74 11.77 6.85 3.75 68.11 21.56 87.00 23.73 5.33 49.61 10.65 0.54 16.76 24.15 6.62
FANet P2PDA 33.52 57.16 25.66 78.43 16.02 26.88 12.76 2.30 7.34 68.73 26.92 87.45 36.51 1.20 62.83 20.16 0.00 68.46 17.86 20.19
FANet P2PDA + SSL 35.67 58.08 28.75 78.19 16.47 26.86 13.78 4.76 7.62 69.01 34.58 87.51 36.12 0.90 64.06 27.50 0.00 84.99 18.13 20.35
DANet - 28.50 70.68 8.30 75.80 9.49 21.64 15.91 5.85 9.26 71.08 31.50 85.13 6.55 1.68 55.48 24.91 30.22 0.52 0.53 17.00
DANet P2PDA 40.52 62.90 25.58 76.62 24.45 30.37 14.45 16.75 9.96 67.87 19.70 82.04 34.18 22.95 56.99 54.27 44.15 47.75 46.98 31.86
DANet P2PDA + SSL 41.99 70.21 30.24 78.44 26.72 28.44 14.02 11.67 5.79 68.54 38.20 85.97 28.14 0.00 70.36 60.49 38.90 77.80 39.85 24.02
Trans4PASS-T - 45.89 72.42 32.53 84.43 20.13 35.20 24.45 15.37 12.59 78.85 31.65 90.87 42.42 14.12 74.07 39.66 35.45 90.32 50.31 26.95
Trans4PASS-T P2PDA 51.05 74.82 36.53 85.93 30.23 34.83 33.70 20.36 20.40 77.43 34.87 93.65 46.01 20.89 76.85 58.19 51.20 82.19 56.84 35.09
Trans4PASS-S - 48.73 70.28 25.52 84.98 29.10 39.00 29.05 17.77 13.21 78.26 29.89 91.00 42.16 13.43 78.26 47.25 63.82 78.06 60.31 34.38
Trans4PASS-S P2PDA 52.91 76.29 41.02 86.86 31.96 42.15 35.15 20.98 19.49 79.44 29.26 93.64 49.62 17.47 78.77 62.80 66.38 77.98 59.23 36.73

Trans4PASS-T - 45.89 72.42 32.53 84.43 20.13 35.20 24.45 15.37 12.59 78.85 31.65 90.87 42.42 14.12 74.07 39.66 35.45 90.32 50.31 26.95
Trans4PASS-T Warm-up 50.56 76.54 38.94 84.99 27.1 33.61 30.75 18.75 16.73 79.15 41.43 92.19 43.1 18.49 78.42 59.0 51.09 79.9 58.88 31.54
Trans4PASS-T SSL 51.86 78.24 41.16 85.82 27.86 36.01 30.92 21.26 17.70 79.11 46.44 93.47 44.72 17.66 79.44 63.69 48.14 81.56 59.09 32.96
Trans4PASS-T MPA 51.93 77.27 45.61 85.66 23.57 37.10 31.22 20.13 15.35 79.91 43.81 93.95 46.37 21.63 79.34 62.09 56.05 78.43 56.31 32.89
Trans4PASS-T MPA + SSL 53.26 78.14 41.24 85.99 30.21 37.28 32.60 21.71 19.05 79.05 45.70 93.87 48.71 18.15 79.63 64.69 54.71 84.57 59.26 37.31
Trans4PASS-T MPA + SSL + MS 54.72 78.42 42.26 85.88 30.97 38.10 33.83 21.57 20.92 78.26 44.90 93.57 48.43 22.53 79.90 66.00 66.32 85.10 60.54 42.09

Trans4PASS-S - 48.73 70.28 25.52 84.98 29.10 39.00 29.05 17.77 13.21 78.26 29.89 91.00 42.16 13.43 78.26 47.25 63.82 78.06 60.31 34.38
Trans4PASS-S Warm-up 52.59 75.28 37.08 86.21 31.34 38.84 34.6 20.92 17.13 79.18 34.86 93.81 49.15 24.12 80.01 55.38 62.2 77.8 61.14 40.2
Trans4PASS-S SSL 54.67 79.72 44.34 85.28 28.88 43.46 34.08 22.63 17.21 78.93 43.98 92.84 49.58 26.28 81.04 65.92 67.37 76.96 59.90 40.25
Trans4PASS-S MPA 54.77 80.55 51.12 87.12 25.87 45.55 34.64 23.44 14.45 79.60 31.77 93.98 49.55 22.98 78.97 66.73 66.28 88.65 61.09 38.25
Trans4PASS-S MPA + SSL 55.25 78.39 41.62 86.47 31.56 45.47 34.02 22.98 18.33 79.63 41.35 93.80 49.02 22.99 81.05 67.43 69.64 86.04 60.85 39.20
Trans4PASS-S MPA + SSL + MS 56.38 79.91 42.68 86.26 30.68 42.32 36.61 24.81 19.64 78.80 44.73 93.84 50.71 24.39 81.72 68.86 66.18 88.62 63.87 46.62

Table 3. Per-class results on DensePASS dataset. ‘SSL’ represents the self-supervised learning with pseudo-labels. ‘-’ means no
adaptation. ‘MS’ denotes multi-scale evaluation.
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DANet - 40.28 0.00 56.07 52.09 72.05 35.72 20.54 5.81 19.43 72.84 31.76 41.80 68.43 47.13
DANet P2PDA 42.26 0.22 57.49 50.92 73.09 44.63 21.72 9.09 24.02 83.18 30.94 41.36 65.43 47.24

PVT-Tiny - 24.45 0.06 28.05 32.99 58.97 13.68 12.97 3.03 2.46 76.56 0.00 28.65 51.20 9.23
PVT-Tiny P2PDA 39.66 0.38 60.55 54.08 75.14 33.99 26.20 7.23 12.66 82.58 9.14 42.74 65.75 45.12
PVT-Small - 23.11 0.42 29.82 26.20 58.65 5.89 12.62 3.57 1.80 77.11 0.00 28.49 48.24 7.58
PVT-Small P2PDA 43.10 0.00 66.24 55.31 76.92 40.95 28.99 5.60 13.62 88.35 14.53 52.08 68.26 49.50

Trans4PASS-T - 46.08 0.28 65.21 60.07 76.36 50.30 33.09 11.89 20.72 86.87 26.14 50.84 68.64 48.56
Trans4PASS-T MPA 47.48 0.16 66.8 60.54 76.06 52.50 31.50 14.55 20.73 86.53 36.09 52.10 69.73 50.01
Trans4PASS-S - 48.34 2.41 70.15 60.22 77.97 62.10 35.37 13.68 16.15 89.44 31.78 62.03 67.63 54.40
Trans4PASS-S MPA 52.15 1.03 68.02 61.38 82.23 58.74 35.18 17.39 36.36 90.26 46.15 56.79 73.46 50.91

DANet supervised 44.15 0.27 55.13 53.40 73.92 54.03 34.60 5.27 12.45 90.05 30.57 50.25 66.63 47.44
Trans4PASS-S supervised 53.31 0.43 69.45 62.24 82.77 58.52 34.26 21.86 44.87 91.19 40.78 57.69 74.80 54.20

Table 4. Per-class results on Stanford2D3D-Panoramic dataset according to the fold-1 data setting [1].
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StdConv [12] RGB 32.6 0 46.6 44.9 60.8 32.4 18.8 0 13.0 78.0 0 32.6 54.8 40.1
CubeMap [12] RGB 33.8 0.2 48.3 48.5 61.3 33.4 23.4 0 15.4 72.7 0 33.8 61.7 36.9
DistConv [12] RGB 34.6 0.3 50.8 47.1 61.5 35.4 19.5 0 13.8 83.4 0 34.5 57.1 42.6
UNet [10] RGB-D 35.9 8.5 27.2 30.7 78.6 35.3 28.8 4.9 33.8 89.1 8.2 38.5 58.8 23.9
GaugeNet [2] RGB-D 39.4 – – – – – – – – – – – – –
UGSCNN [8] RGB-D 38.3 8.7 32.7 33.4 82.2 42.0 25.6 10.1 41.6 87.0 7.6 41.7 61.7 23.5
HexRUNet [13] RGB-D 43.3 10.9 39.7 37.2 84.8 50.5 29.2 11.5 45.3 92.9 19.1 49.1 63.8 29.4
Tangent (ResNet-101) [5] RGB 45.6 – – – – – – – – – – – – –
HoHoNet (ResNet-101) [11] RGB 52.0 – – – – – – – – – – – – –
Trans4PASS (F-1) RGB 53.3 0.4 69.5 62.2 82.8 58.5 34.3 21.9 44.9 91.2 40.8 57.7 74.8 54.2
Trans4PASS (F-2) RGB 45.7 12.5 46.9 32.6 82.3 64.7 37.5 20.1 42.7 86.6 17.7 45.2 70.3 35.1
Trans4PASS (F-3) RGB 57.2 21.4 65.4 58.3 80.2 55.8 41.9 28.6 76.3 88.6 45.4 58.8 59.3 63.6
Trans4PASS (Avg) RGB 52.1 11.4 60.6 51.1 81.8 59.7 37.9 23.5 54.6 88.8 34.6 53.9 68.1 51.0
Trans4PASS (F-1, MS) RGB 54.2 0.7 72.1 64.1 83.4 61.3 35.5 22.4 42.2 92.0 41.6 59.4 75.3 54.4
Trans4PASS (F-2, MS) RGB 46.4 3.1 48.2 32.1 82.9 66.4 37.8 20.3 42.7 87.2 16.8 45.9 71.3 38.0
Trans4PASS (F-3, MS) RGB 58.4 1.7 67.1 60.1 81.3 56.8 42.6 29.8 77.6 89.5 45.3 59.9 60.1 67.3
Trans4PASS (Avg, MS) RGB 53.0 1.8 62.5 52.1 82.6 61.5 38.6 24.2 54.2 89.5 34.5 55.1 68.9 53.2

U
D

A

Trans4PASS (F-1) RGB 48.6 0.1 65.8 58.3 80.5 54.2 29.1 17.4 23.7 89.0 34.3 54.9 73.2 51.6
Trans4PASS (F-2) RGB 40.6 10.2 38.3 28.9 77.8 54.6 32.5 15.7 32.9 83.2 13.7 38.0 67.9 33.6
Trans4PASS (F-3) RGB 55.2 17.4 64.7 60.2 76.4 58.3 41.4 5.0 76.6 84.5 47.2 57.3 63.8 64.5
Trans4PASS (Avg) RGB 48.1 9.2 56.3 49.1 78.2 55.7 34.3 12.7 44.4 85.6 31.8 50.1 68.3 49.9
Trans4PASS (F-1, MPA) RGB 52.2 1.0 68.0 61.4 82.2 58.7 35.2 17.4 36.4 90.3 46.2 56.8 73.5 50.9
Trans4PASS (F-2, MPA) RGB 41.8 11.0 35.1 30.9 78.6 59.3 32.7 14.3 45.6 80.1 22.9 37.0 66.2 29.6
Trans4PASS (F-3, MPA) RGB 58.5 24.5 70.4 59.0 81.3 58.5 43.3 4.6 76.1 89.6 53.3 62.0 65.7 72.0
Trans4PASS (Avg, MPA) RGB 50.8 12.2 57.8 50.4 80.7 58.8 37.1 12.1 52.7 86.7 40.8 51.9 68.4 50.8
Trans4PASS (F-1, MPA, MS) RGB 52.6 0.8 70.7 63.3 82.2 60.8 36.2 16.4 33.4 90.5 45.9 58.4 73.1 51.5
Trans4PASS (F-2, MPA, MS) RGB 42.6 11.7 35.5 31.6 79.2 60.8 33.2 15.6 46.5 78.8 24.1 38.0 66.2 32.5
Trans4PASS (F-3, MPA, MS) RGB 58.3 22.6 70.6 59.4 81.5 58.8 43.9 4.2 76.7 89.5 52.8 62.0 66.0 70.7
Trans4PASS (Avg, MPA, MS) RGB 51.2 11.7 58.9 51.4 81.0 60.1 37.7 12.0 52.2 86.2 40.9 52.8 68.4 51.6

Table 5. Comparison on Stanford2D3D-Panoramic dataset. ‘F-i’ is the result of the fold-i (in gray) setting of Stanford2D3D [1]. ‘Avg’
is the averaged result of all 3 folds. ‘MS’ is multi-scale evaluation. ‘UDA’ is short for unsupervised domain adaptation.
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Figure 3: Qualitative comparisons in outdoor scenarios.



References
[1] Iro Armeni, Sasha Sax, Amir R. Zamir, and Silvio

Savarese. Joint 2D-3D-semantic data for indoor scene
understanding. arXiv preprint arXiv:1702.01105,
2017.

[2] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and
Max Welling. Gauge equivariant convolutional net-
works and the icosahedral CNN. In ICML, 2019.

[3] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convo-
lutional networks. In ICCV, 2017.

[4] Liuyuan Deng, Ming Yang, Hao Li, Tianyi Li, Bing
Hu, and Chunxiang Wang. Restricted deformable
convolution-based road scene semantic segmentation
using surround view cameras. T-ITS, 2020.

[5] Marc Eder, Mykhailo Shvets, John Lim, and Jan-
Michael Frahm. Tangent images for mitigating spher-
ical distortion. In CVPR, 2020.

[6] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao,
Zhiwei Fang, and Hanqing Lu. Dual attention network
for scene segmentation. In CVPR, 2019.

[7] Ping Hu, Federico Perazzi, Fabian Caba Heilbron,
Oliver Wang, Zhe Lin, Kate Saenko, and Stan
Sclaroff. Real-time semantic segmentation with fast
attention. RA-L, 2021.

[8] Chiyu Max Jiang, Jingwei Huang, Karthik Kashinath,
Prabhat, Philip Marcus, and Matthias Nießner. Spher-
ical CNNs on unstructured grids. In ICLR, 2019.

[9] Chaoxiang Ma, Jiaming Zhang, Kailun Yang, Alina
Roitberg, and Rainer Stiefelhagen. DensePASS:
Dense panoramic semantic segmentation via unsu-
pervised domain adaptation with attention-augmented
context exchange. In ITSC, 2021.

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: convolutional networks for biomedical image
segmentation. In MICCAI, 2015.

[11] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Ho-
HoNet: 360 indoor holistic understanding with latent
horizontal features. In CVPR, 2021.

[12] Keisuke Tateno, Nassir Navab, and Federico Tombari.
Distortion-aware convolutional filters for dense pre-
diction in panoramic images. In ECCV, 2018.

[13] Chao Zhang, Stephan Liwicki, William Smith, and
Roberto Cipolla. Orientation-aware semantic segmen-
tation on icosahedron spheres. In ICCV, 2019.

[14] Jiaming Zhang, Chaoxiang Ma, Kailun Yang, Alina
Roitberg, Kunyu Peng, and Rainer Stiefelhagen.
Transfer beyond the field of view: Dense panoramic
semantic segmentation via unsupervised domain adap-
tation. T-ITS, 2021.


