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1. Quantitative analysis
1.1. Analysis of hyper-parameters

As the spatial correspondence problem indicated in [3],
if the deformable convolution is applied to the lower or mid-
dle layers, the spatial structures are susceptible to fluctu-
ation [4]. To overcome this problem, we propose the re-
gional restriction of learned offsets to stabilize the training
of our early-stage and four-stage Deformable Patch Embed-
ding (DPE) module. Table 1 shows that r=4 has a better
result. Thus, the constraint  applied in the offset prediction
module is set as 4 in our experiments.

To investigate the effect of various hyper-parameters
in the proposed Trans4PASS framework, we analyze the
weight « and the temperature 7 as shown in Fig. la and
Fig. 1b. The weight « is used to combine the Mutual Pro-
totypical Adaptation (MPA) loss and the source- and target
segmentation losses. As « decreases from 0.1 to 0, we set
the temperature 7 =35 in the MPA loss and evaluate the
mlIoU(%) results on the target (DensePASS [9]) dataset. If
a=0, the final loss is equivalent to that of the SSL-based
method, i.e., the MPA loss is excluded. When ov=0.001 for
combining both, MPA and SSL, Trans4PASS obtains a bet-
ter performance.

Apart from the combination weight «, we further inves-
tigate the effect of the temperature 7, which is used in the
MPA loss. As shown in Fig. 1b, the performance is not sen-
sitive to the distillation temperature, which illustrates the
robustness of our MPA method. Nevertheless, we found
that MPA performs better when the temperature is lower, so
T=20 is set as the default setting in our experiments.

1.2. Computational complexity

We reported the complexity of Deformable Patch Em-
bedding (DPE) and Deformable MLP (DMLP) and com-
pared with other methods on DensePASS in Table 2. The
results indicate that our methods have significant improve-
ment with the same order of complexity.

| None r=1 r=2 =4 r=8

mlIoU(%) | 4574 4451 4559 45.89 45.57
Table 1. Effect of regional restriction (r) on DensePASS.
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Figure 1: Analysis of hyper-parameters. The performance
(mloU) is evaluated in the outdoor target dataset (DensePASS).

| PE[79] DPT[8] | DPE CycleMLP[6] ASMLP[43] DMLP

GFLOPs |  0.16 036 | 765 125 483 345
#Params(M) | 0.01 002 | 290 045 104 079

mloU(%) | 4514 4589 | 3650 40.16 4205 4589
Table 2. Computational complexity of DPE and DMLP.

GFLOPs are calculated @512x512.

1.3. Detailed results in outdoor scenarios

Table 3 shows the per-class IoU results on DensePASS
dataset. The first group of experiments is conducted to com-
pare the performance of different backbones in P2PDA [14]
method. Additionally, the adaptation process of the original
FANet [7] and DANet [6] are shown in more detail, i.e., the
performance of the source-only model and that without us-
ing the SSL-based method are included. The experiments
in the second and third groups are based on Trans4PASS-T
and -S model, respectively. As shown in the third group,
Trans4PASS-S obtains new state-off-the-art performance in
mean IoU (56.38%). In addition, it achieves top scores on
7 out of 19 classes in per-class IoU, including pole, traffic
light, person, car, truck, motorcycle, and bicycle.

1.4. Detailed results in indoor scenarios

Apart from the detailed results in outdoor scenarios,
per-class results on the outdoor Stanford2D3D-Panoramic
dataset [1] are shown in Table 4. The experiments are con-
ducted on the fold-1 dataset setting of Stanford2D3D [1].
Our proposed framework with the Trans4PASS-S backbone



and the MPA method obtains the best performance in the
domain adaptation setting, reaching 52.15% in mean IoU.
It also achieves best IoU scores on 7 out of 13 classes
in the indoor scenario, especially on the ceiling, column,
and door categories. In the supervised learning setting,
Trans4PASS-S surpasses the CNN-based DANet by a large
margin, achieving a score of 53.31% in mean IoU. Besides,
its performance in per-class IoU is better than DANet in al-
most all categories, which lacks the capacity to learn long-
range contexts and distortion-aware features in panoramas.

The comparison of segmentation performance with state-
of-the-art methods on Stanford2D3D-Panoramic dataset is
shown in Table 5. Since the results of these experi-
ments are based on the average of all 3 data-splitting set-
tings, we show the results of each individual split setting
and its per-class IoU in detail (in gray). The small ver-
sion of the Trans4PASS backbone is used in this experi-
ment. Compared with the previous best fully-supervised
method equipped with ResNet-101, Trans4PASS-S has
much fewer parameters and is an order of magnitude
smaller than ResNet-101. Still, our method obtains the new
state-of-the-art performance on Stanford2D3D-Panoramic
dataset, reaching 53.0% in mean IoU. Within all 13 classes,
Trans4PASS obtains a total of 8 best per-class IoUs. In the
setting of unsupervised domain adaptation (UDA), our pro-
posed method achieves +2.7% in the average of three folds,
and +3.1% when using multi-scale evaluation. It obtains
best per-class scores on 9 out of 13 categories.

2. Qualitative analysis
2.1. More visualizations in indoor scenarios

Similar to the visualization in outdoor scenarios, more
qualitative comparisons between the baseline and the pro-
posed Trans4PASS are displayed in Fig. 2, which are from
the evaluation set of Stanford2D3D-Panoramic [1] in the
fold-1 setting. In Fig. 2(a), Trans4PASS can produce higher
quality segmentation results in those categories highlighted
by the black dashed rectangles, such as column and book-
case categories, while the baseline model can hardly iden-
tify these severely deformed objects. In Fig. 2(b), the doors
are incorrectly segmented as part of the wall by the baseline
model, and the correct segmentation results can be gener-
ated by our Trans4PASS model.

2.2. More visualizations in outdoor scenarios

To fully demonstrate the effect of Trans4PASS in dealing
with image distortions and object deformations, more qual-
itative comparisons between the baseline and the proposed
Trans4PASS are displayed in Fig. 3, which are generated
from the evaluation set of DensePASS dataset [9]. Specif-
ically, Trans4PASS can better classify and segment de-
formed foreground objects with accurate boundaries, such
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Figure 2: Qualitative comparisons in indoor scenarios.

as the segmentation results of cars and trucks highlighted
by the blue dashed rectangles in Fig. 3(a), while the baseline
model without deformable PE and deformable MLP mod-
ules is likely to be confused or fail in these categories. Apart
from the foreground object, the ultra-wide arranged back-
ground is particularly distorted and challenging. Thanks to
the two distortion-aware modules, our Trans4PASS yields
high-quality segmentation results in these categories, e.g.,
terrain, sidewalk, and wall in Fig. 3(b).

3. Broader Impact.

This work promotes panoramic semantic segmentation
of indoor and outdoor scenes, which benefits ultra-wide
scene understanding. However, the proposed method has
not been verified in practical applications such as those in
intelligent vehicles and mobility assistive systems. As the
experiments are conducted based on the referred datasets,
there are still data biases in different test fields. If the
learned model is directly applied to real scenarios, it may
cause negative social impacts such as less reliable decision
with less accurate segmentation, which should be consid-
ered in the downstream applications.
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Trans4PASS-T P2PDA 51.05 | 74.82 36.53 8593 30.23 34.83 33.70 2036 20.40 77.43 34.87 93.65 46.01 20.89 76.85 58.19 51.20 82.19 56.84 35.09
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Trans4PASS-T SSL 51.86 | 78.24 41.16 85.82 27.86 36.01 30.92 21.26 17.70 79.11 46.44 93.47 4472 17.66 79.44 63.69 48.14 81.56 59.09 32.96
Trans4PASS-T MPA 51.93 | 77.27 45.61 85.66 23.57 37.10 31.22 20.13 1535 79.91 43.81 93.95 4637 21.63 7934 62.09 56.05 7843 5631 32.89
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Trans4PASS-S MPA + SSL 55.25 | 7839 41.62 8647 31.56 4547 34.02 2298 1833 79.63 4135 93.80 49.02 22.99 81.05 67.43 69.64 86.04 60.85 39.20
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Table 3. Per-class results on DensePASS dataset. ‘SSL’ represents the self-supervised learning with pseudo-labels. ‘-’ means no
adaptation. ‘MS’ denotes multi-scale evaluation.
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DANet - 40.28 0.00 56.07 52.09 72.05 35.72 20.54 5.81 19.43 72.84 31.76 41.80 68.43 47.13
DANet P2PDA 42.26 0.22 57.49 50.92 73.09 44.63 21.72 9.09 24.02 83.18 30.94 41.36 65.43 47.24
PVT-Tiny - 24.45 0.06 28.05 32.99 58.97 13.68 12.97 3.03 2.46 76.56 0.00 28.65 51.20 9.23
PVT-Tiny P2PDA 39.66 0.38 60.55 54.08 75.14 33.99 26.20 7.23 12.66 82.58 9.14 42.74 65.75 45.12
PVT-Small - 23.11 0.42 29.82 26.20 58.65 5.89 12.62 3.57 1.80 77.11 0.00 28.49 48.24 7.58
PVT-Small P2PDA 43.10 0.00 66.24 55.31 76.92 40.95 28.99 5.60 13.62 88.35 14.53 52.08 68.26 49.50
Trans4PASS-T - 46.08 0.28 65.21 60.07 76.36 50.30 33.09 11.89 20.72 86.87 26.14 50.84 68.64 48.56
Trans4PASS-T MPA 47.48 0.16 66.8 60.54 76.06 52.50 31.50 14.55 20.73 86.53 36.09 52.10 69.73 50.01
Trans4PASS-S - 48.34 241 70.15 60.22 77.97 62.10 35.37 13.68 16.15 89.44 31.78 62.03 67.63 54.40
Trans4PASS-S MPA 52.15 1.03 68.02 61.38 82.23 58.74 35.18 17.39 36.36 90.26 46.15 56.79 73.46 50.91
DANet supervised 44.15 0.27 55.13 53.40 73.92 54.03 34.60 5.27 12.45 90.05 30.57 50.25 66.63 47.44
Trans4PASS-S supervised 53.31 043 69.45 62.24 82.77 58.52 34.26 21.86 44.87 91.19 40.78 57.69 74.80 54.20

Table 4. Per-class results on Stanford2D3D-Panoramic dataset according to the fold-1 data setting [1].
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StdConv [12] RGB 32.6 0 466 449 608 324 188 0 130 780 0 326 548 40.1
CubeMap [12] RGB 33.8 02 483 485 613 334 234 0 154 727 0 338 617 369
DistConv [12] RGB 34.6 03 508 47.1 615 354 195 0 138 834 0 345 571 426
UNet [10] RGB-D | 359 85 272 307 786 353 288 49 338 89.1 82 385 588 239
GaugeNet [2] RGB-D 394 — — - - - - - - - - - - -
~| UGSCNN [8] RGB-D | 383 87 327 334 822 420 256 101 416 870 76 417 617 235
S| HexRUNet [13] RGB-D | 433 109 397 372 848 505 292 115 453 929 191 491 638 294
‘Z| Tangent (ResNet-101) [5] RGB 45.6 - - - - - - - - - - - - -
8| HoHoNet (ResNet-101) [11] RGB 52.0 - - - - - - - - - - - - -

ij
Trans4PASS (Avg) RGB 52.1 114 606 51.1 81.8 597 379 235 546 8.8 346 539 681 510
Trans4PASS (Avg, MS) RGB 53.0 1.8 625 521 826 615 386 242 542 895 345 551 689 532
Trans4PASS (Avg) RGB 48.1 92 563 491 782 557 343 127 444 856 318 501 683 499

<

S
Trans4PASS (Avg, MPA) RGB 508 | 122 578 504 80.7 588 37.1 121 527 8.7 408 519 684 508
Trans4PASS (Avg, MPA, MS) RGB 51.2 11.7 589 514 810 601 377 120 522 8.2 409 528 684 51.6

Table 5. Comparison on Stanford2D3D-Panoramic dataset. ‘F-i’ is the result of the fold-i (in ) setting of Stanford2D3D [1]. ‘Avg’
is the averaged result of all 3 folds. ‘MS’ is multi-scale evaluation. ‘UDA’ is short for unsupervised domain adaptation.



y
s

!- & e

-
ans4PASS ans4PASS
[ :
[ _RGB__]
|
g o]
ans4PASS ans4PASS
¥ 7 { [ Tl
B i s

-

ans4PASS|

ans4PASS|

(@) (b)

Figure 3: Qualitative comparisons in outdoor scenarios.
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