
Supplementary Material for “CAT-Det: Contrastively Augmented Transformer for
Multi-modal 3D Object Detection”

In this supplementary document, we provide more im-
plementation details of the proposed CAT-Det framework
in Sec. A as well as more ablation results on the main com-
ponents of our approach in Sec. B including: the CMT mod-
ule, the memory bank size, the trade-off parameter λ bal-
ancing the detection loss pLrpn ` Lrcnnq and contrastive
learning loss pLcl´p`Lcl´oq, the GT-Paste and the ITB and
PTB blocks. The runtime and complexity analysis of CAT-
Det are also reported in Sec. B. In addition, we demonstrate
more visualization results of CAT-Det on KITTI val split
in Sec. C, and show detailed scores on the official KITTI
test leaderboard in Sec. D.

A. More Implementation Details
In this section, we describe the details of the major parts

in CAT-Det (as depicted in Fig. 2 in the main paper), includ-
ing pointformer, imageformer, one-way multi-modal data
augmentation (OMDA), and 3D box generation and point
segmentation, together with the training losses.

The detailed network architecture is illustrated in Fig. A,
and we elaborate each critical component as follows.

As displayed in Fig. 2 and Fig. 3 from the main pa-
per, Pointformer consists of four point transformer blocks
(PTBs), where the radii for ball query in PTBs are set
to r0.1, 0.5, 1.0, 2.0s and the channel sizes are fixed as
r96, 256, 512, 1024s, respectively. The linear projection di-
mension in basic point transformer (BT) is set to 512. Sim-
ilar to PointNet++, four feature propagation (FP) layers are
adopted after stacked PTBs for up-sampling the point-cloud
back to the original size with a stride of 4.

As shown in Fig. 4, Imageformer is composed of four
image transformer blocks (ITBs), where the channel sizes
are r64, 128, 256, 512s, respectively. For basic transformer,
we use 4 self attention heads, of which the linear projection
dimensions are fixed as 1024. The sizes of the input fea-
ture maps are r640ˆ 192, 320ˆ 96, 160ˆ 48, 80ˆ 24s and
those of the patches are r32, 16, 8, 4s. Similarly, following
the cascaded ITBs, four up-sampling (UP) layers are em-
ployed to recover the image resolution with strides 2, 4, 8,
16, generating feature maps with the same size as the origi-
nal image.

As for OMDA, similar to [4], we first generate a set of

object-level point-clouds by cropping the points from the
ground truth bounding boxes in the training data. There-
after, we randomly select a subset of object-level point-
clouds and paste them to a given LiDAR frame. With re-
gard to contrastive learning, the temperature parameter τ is
empirically fixed as 0.07. As to the memory bank, the mo-
mentum update hyper-parameter m is set to 0.999.

In 3D Box Generation and Point Segmentation as well
as Training Losses, as displayed in Fig. 2 from the main
paper, we follow the existing work [2] and introduce point
segmentation as an auxiliary task by employing an extra
segmentation head Hsegp¨q , which is trained by the seg-
mentation loss Lseg . Due to space limit, we omit the de-
scription on Hsegp¨q and Lseg in the main paper for suc-
cinctness. In this document, we provide more details.

Specifically, Hsegp¨q consists of two fully connected
(FC) layers, which is trained by the segmentation loss for-
mulated as below:

Lseg “
ÿ

pi

Lfocalppiq, (1)

where
Lfocalppiq “ ´αp1 ´ p1qγ logpp1q (2)

is the focal loss [1], and pi is the i-th point. p1 equals to p
if pi is the foreground point, and equals to 1 ´ p otherwise,
where p is the predicted confidence score. During train-
ing, we keep the default setting, i.e. α “ 0.25 and γ “ 2
in Eq. (2). Note that the ground-truth segmentation mask
is naturally provided by the labels, i.e. 3D points inside
ground truth 3D boxes are considered as foreground points.

With point segmentation, a box regression head is intro-
duced to generate 3D bounding box proposals. The fea-
ture for each proposal is obtained by randomly selecting
512 points in the corresponding proposal on top of the last
layer of our two-stream multi-modal transformer. Subse-
quently, the refinement network consisting of three set ab-
straction (SA) layers is adopted to build a global represen-
tation, following which two cascaded 1 ˆ 1 convolution
layers for classification and regression are used to gener-
ate the prediction for detection including a 3D bounding
box px, y, z, h, w, l, θq and a class confidence score c. Here,
px, y, zq indicates the 3D coordinate of the object center,
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Figure A. Detailed network architecture of the proposed CAT-Det framework. PTB: the point transformer block; ITB: the image transformer
block; CMT: the cross-modal transformer; FPS: the farthest point sampling; BQ: the ball query; BT: the basic point transformer; VT: the
basic vision transformer; MP: the max-pooling; UP: the up-sampling layer; FP: the feature propagation layer; SA: the set abstraction layer;
and FC: the fully connected layer.

ph,w, lq refers to the bounding box size, and θ is the ori-
entation from the bird’s eye view. Lrpn includes the point-
cloud segmentation loss Lseg and the proposal generation
loss Lpg , i.e. Lrpn “ Lseg ` Lpg . Lpg and Lrcnn denote
the training objectives for the 3D proposal generation and
refinement network, both of which consist of a classifica-
tion loss and a regression loss. Concretely, for pz, h, w, lq,
we directly utilize the smooth L1 loss for regression. For
px, y, θq, we use the bin-based loss [2]. The overall 3D
bounding box regression loss for the i´th bounding box is
formulated as below:

Lpiq
bin “

ÿ

uPtpx,y,θqu

pLcep xbin
piq

u , binpiq
u q

` Lsmooth-L1pxrespiq
u , respiq

u qq,

Lpiq
res “

ÿ

vPtpz,h,w,lqu

Lsmooth-L1pxrespiq
v , respiq

v q, (3)

Lpiq
box “Lpiq

bin ` Lpiq
res ,

where xbin
piq

and xrespiq are the predicted bin assignments
and residuals, respectively. binpiq and respiq are the ground-
truth targets, Lce and Lsmooth-L1 denote the cross-entropy
classification loss and the smooth-L1 loss, respectively.
Based on Eq. (3), Lrcnn is written as the following:

Lrcnn “
1

}B}

ÿ

iPB

Lcepprobi, labeliq`
1

}Bpos}

ÿ

iPBpos

Lpiq
box

(4)
where B is the set of 3D proposals from RPN and Bpos is
the set of positive proposals for regression. probi is the con-
fidence score and labeli refers to the corresponding ground-

truth label. Lpg has the similar formulation as Lrcnn.

B. More Ablation Results
In this section, we provide more ablation results w.r.t.

the CMT module, the memory bank size and the trade-off-
parameter λ.

As for CMT, we adopt this module after each PTB and
ITB in four distinct levels as in Fig. 2 of the main paper,
denoted by Layer-1, Layer-2, Layer-3, and Layer-4, respec-
tively. We also adopt it between FPs in Pointformer and
UPs in Imageformer, denoted as Layer-5. To validate the
benefit of fully using CMT in all layers, we perform the ab-
lation study by separately removing CMT from each layer.
As summarized in Table A, removing CMT at an arbitrary
level deteriorates the performance, and CMT plays a more
important role in higher levels based on the observation that
the performance decreases more sharply when they are re-
moved in Layer-3„5 than that in Layer-1„2. The results in
Table A also suggest that CMT can integrate multi-modal
information in different levels, thus reaching the best per-
formance when being fully used.

We further explore the effect of the memory bank size
on the performance of OMDA, by varying it from 256 to
4,096. It is worth noting that the bank size determines the
number of negative samples used. As shown in Table B, the
mAP of CAT-Det increases as the bank size becomes larger,
and reach the highest one when the size is 1,024. The rea-
son behind lies in that the performance of OMDA increases
when properly using more negative samples, but will be de-
teriorated when using too much negative pairs, since it prob-
ably leads to severe imbalance of positive/negative samples.
We empirically set it to 1,024 in all the experiments.



Method 3D Object Detection (%)
Levels Car Ped. Cyc. mAP

Fully used in Layer-1„ 5 83.58 66.45 76.22 75.42
Removed in Layer-1 83.35 66.18 75.93 75.15
Removed in Layer-2 83.21 65.83 75.54 74.86
Removed in Layer-3 82.84 65.30 75.12 74.42
Removed in Layer-4 83.26 65.14 75.25 74.55
Removed in Layer-5 82.73 64.89 74.76 74.13

Table A. Ablation results on the effect of CMT in different layers.

Memory Bank 3D Object Detection (%)
Sizes Car Ped. Cyc. mAP
256 83.25 66.15 76.03 75.14
512 83.32 66.14 76.12 75.19
1024 83.58 66.45 76.22 75.42
2048 83.26 66.21 76.37 75.28
4096 82.97 66.13 76.09 75.06

Table B. Ablation results by using various memory bank sizes in
the OMDA module.

Figure B. Ablation results on the trade-off parameter λ, which bal-
ances the effects of the detection loss pLrpn`Lrcnnq and the con-
trastive learning loss pLcl´p ` Lcl´oq.

In regard of the hyper-parameter λ, as shown in Fig. B,
the contrastive learning loss is not fully used for supervi-
sion when λ is small, thus yielding worse performance. In
contrast, when λ becomes too large, the credit of the de-
tection loss is improperly suppressed, also incurring poor
results. The two kinds of losses, i.e. pLrpn ` Lrcnnq

and pLcl´p ` Lcl´oq, achieve their optimal balance when
λ “ 0.15, which is therefore used as a default in our work.

We also add results of applying GT-Paste only on point-
clouds in Table C and show that inconsistent data augmenta-
tion tends to degrade the results (even worse than that with-
out GT-Paste). Instead, OMDA well addresses this issue.

In order to further investigate the contributions of ITB
we add more results by removing ITB and local/global
transformers. As PTB cannot be directly removed, we re-
place it by PointNet++. The results summarized in Table D

Method Car Ped. Cyc. mAP(%)
w/o GT-Paste 81.73 63.30 70.63 71.89

with GT-Paste on 3D points 81.13 61.15 69.42 70.57
with OMDA 83.58 66.45 76.22 75.42

Table C. Ablation results on GT-Paste and contrastive learning on
KITTI Val.

Method Car Ped. Cyc. mAP(%)
Full model 83.58 66.45 76.22 75.42

w/o ITB 81.22 63.20 70.18 71.53
Replacing PTB by PointNet++ 82.69 64.93 74.61 74.08

w/o Global Transformer 82.83 65.21 74.88 74.31
w/o Local Transformer 83.19 65.94 75.65 74.93

Table D. Ablation results on ITB and PTB on KITTI Val.

Method Modality Params (M) Time (ms) mAP (%)
AVOD-FPN L+I 38.07 100 56.84
F-PointNet L+I 12.45 167 57.86

EPNet L+I 16.23 178 –
VPFNet [3] L+I – 200 65.99

PointTransformer L 6.06 250 61.66
M3DETR L 19.66 256 64.65

CAT-Det (Ours) L+I 23.21 314 67.05

Table E. Comparison of mAP, size of parameters and runtime on
KITTI Test.

Setting Easy Moderate Hard
Car (Detection) 95.97 94.71 92.07

Car (Orientation) 95.95 94.57 91.88
Car (3D Detection) 89.87 81.32 76.68

Car (Bird’s Eye View) 92.59 90.07 85.82
Pedestrian (Detection) 67.15 56.75 53.44

Pedestrian (Orientation) 52.75 43.86 41.15
Pedestrian (3D Detection) 54.26 45.44 41.94

Pedestrian (Bird’s Eye View) 57.13 48.78 45.56
Cyclist (Detection) 87.94 80.70 73.86

Cyclist (Orientation) 87.79 80.25 73.41
Cyclist (3D Detection) 83.68 68.81 61.45

Cyclist (Bird’s Eye View) 85.35 72.51 65.55

Table F. Detailed results (%) on the official KITTI test leaderboard
by using CAT-Det.

highlight their effectiveness.
Finally, we report the runtime and the size of param-

eters with comparisons to major multi-modal methods and
transformer based ones. As in Table E, our method reaches
a good trade-off, with the highest accuracy and moderately
increased model size and inference time. In the future, we
will explore compression techniques to reduce the complex-
ity of the transformer based methods for practical use.

C. More Visualization Results
As in Fig. 7 in the main paper, we demonstrate a few vi-

sualization results by performing 3D detection on KITTI val
split via CAT-Det. In this section, we display more results.



Figure C. Visualized results by CAT-Det on KITTI val split. Red/green rectangles indicate predicted/GT bounding boxes.

As shown in Fig. C, our approach precisely predicts
both locations and orientations of 3D objects even under
extremely challenging situations, including remote objects
(the top row), tiny objects (the middle row) and objects with
heavy occlusions (the bottom row).

D. Details on Official KITTI Test Leaderboard

In Table 1 and Table 2 from the main paper, we sum-
marize the state-of-the-art results w.r.t AP/mAP on KITTI
val/test splits. In this section, we provide more detailed re-
sults. Table F shows the official results in various settings
(i.e. 3D, BEV, 2D and AOS) for three distinct levels of dif-
ficulties from the KITTI leaderboard. We also present the
Precision-Recall curves in Fig. D on the test set.
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Figure D. Precision Recall Curves on the official KITTI test leaderboard by using CAT-Det. Left to right: Car@0.7, Pedestrian@0.5 and
Cyclist@0.5. Top to bottom: 3D Detection, Bird’s Eye View, 2D Detection and Orientation.


