
Supplementary materials:
Discrete time convolution for fast event-based stereo

Kaixuan Zhang1,3* Kaiwei Che2,3 Jianguo Zhang1,4

Jie Cheng3 Ziyang Zhang3 Qinghai Guo3 Luziwei Leng3*†

1 Department of Computer Science and Engineering, Southern University of Science and Technology, China
2 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, China

3 ACS Lab, Huawei Technologies, Shenzhen, China 4 Peng Cheng Lab, Shenzhen, China

1. Numerical solution of continuous time con-
volution

To avoid numerical instabilities, a semi-implicit Euler
method was applied to solve the ordinary differential equa-
tion (ODE) of fully connected LTC in [3]. We use a similar
approach. The ODE of convolution LTC is described as:

dxcij(t)

dt
=−

[
1

τm,c
+

Icij(t)

Cm,c

]
xcij(t)

+
Icij(t)

Cm,c
Erev,c +

Eleak,c

τm,c

(1)

Icij(t) =
∑
h

∑
k

wchkP
t
h+i,k+j (2)

where Icij(t) represents the convolution input on channel c
at location i, j from the event frame pre-processed by SBT.
The basic Euler method [5] is formulated as:

x(t+∆) = x(t) + ∆f(x(t+ τ), u(t+ 1)) (3)

where ∆ denotes a fixed step size, u denotes inputs to the
neuron. By setting τ = ∆, it realizes the implicit Euler
method, which we apply to the case of convolution LTC
and get:

xcij(t+∆) =xcij(t) + ∆

{
Icij(t+ 1)

Cm,c
Erev,c +

Eleak,c

τm,c

−
[

1

τm,c
+

Icij(t+ 1)

Cm,c

]
xcij(t+∆)

}
(4)

After readjusting the equation, we get:

xcij(t+∆) =
xcij(t)

Cm,c

∆ + Erev,cIcij(t+ 1) + gl,cEleak,c

Cm,c

∆ + gl,c + Icij(t+ 1)

(5)

*These authors contribute equally to this work.
†Corresponding author. lengluziwei@huawei.com

where gl,c = Cm,c/τm,c. Following [3], to ensure precision,
we evolve the LTC neuron with a frequency six times higher
(∆ = 1/6) than the input rate.

Readjusting the convolution LTC equation 1, we get:

dxcij(t)

dt
=
Eleak,c − xcij(t)

τm,c

+
Icij(t)(Erev,c − xcij(t))

Cm,c

(6)

When neglecting the influence of Erev,c on the membrane
potential, Erev,c − xcij(t) can be viewed as 1. Then we
obtain convolution LTC without reversal potential:

dxcij(t)

dt
=

Eleak,c − xcij(t)

τm,c
+

Icij(t)

Cm,c
(7)

Applying a similar method as before, its numerically solu-
tion is formulated as:

xcij(t+∆) =
xcij(t)

Cm,c

∆ + Icij(t+ 1) + gl,cEleak,c

Cm,c + gl,c∆
(8)

2. Network Architecture

We develop our proposed framework using [6] as a base-
line, with major modifications in the feature embedding
sub-network. The architecture of DTC-SPADE network is
shown in Table 1. The network receives as an input left and
right SBT stacks of size 15× 5× h×w and returns dispar-
ity tensor of size h × w. For the DTC module, xcij(0) is
initialized by zero and Icij(t) obtained by 2D convolution
followed by batch normalization. For the SPADE module,
we perform multi-scale dilated convolution and stack their
outputs, based on which we further extract modulation pa-
rameters.

1

Layer Description output size
load data & pre-process

origin SBT 15× 5× h× w
DTC module

T 2D conv. 5× 3× 3× 32 stride 2 with BN, summed with τx(t) 32× h× w
Spatial aggregation

S1 2D conv. 32× 5× 5× 32 stride 2 32× 1
2h× 1

2w
S2 2D conv. 32× 5× 5× 32 stride 2 32× 1

4h× 1
4w

S3 2× residual block with 32× 3× 3× 32 2D conv. 32× 1
4h× 1

4w
S4-redir 2D conv. 32× 3× 3× 8 no IN, LeakyReLU 8× 1

4h× 1
4w

SPADE module
SP pre0 Take the last stack from origin 5× h× w
SP pre1 2D conv. 5× 1× 1× 16 with avg pooling 16× 1

2h× 1
2w

SP pre2 2D conv. 16× 1× 1× 32 with avg pooling 32× 1
4h× 1

4w
SP1 2D conv. 32× 3× 3× 32 stride 1 with ReLU 64× 1

4h× 1
4w

SP2 4 × 2D conv. 64× 3× 3× 16 with dilation {1, 3, 4, 5} and concatenation 64× 1
4h× 1

4w
SP3 2 × 2D conv. 64× 5× 5× 32, for γ and β 64× 1

4h× 1
4w

SP4 Apply BN to S3 and adjust it with γ and β: S3BN(1 + γ) + β 32× 1
4h× 1

4w
Matching module

M1 concatenate left-right embeddings SP4 64× 1
4h× 1

4w
M2 2D conv. 64× 3× 3× 64 stride 2 64× 1

4h× 1
4w

M3 2× residual block with 64× 3× 3× 64 2D conv. 64× 1
4h× 1

4w
M4 2D conv. 64× 3× 3× 8 no IN,LeakyReLU 8× 1

4h× 1
4w

Regularization module
R1 concatenate joint embeddings M4 8× 1

4dmax × 1
4h× 1

4w
R2 3D conv.8× 3× 3× 3× 8 8× 1

4dmax × 1
4h× 1

4w
R3 3D conv.8× 3× 3× 3× 8, stride 2 16× 1

8dmax × 1
8h× 1

8w
R4 R3+S4-redir 16× 1

8dmax × 1
8h× 1

8w
R5 3D conv.16× 3× 3× 3× 16 16× 1

8dmax × 1
8h× 1

8w
R6 R5+R4 16× 1

8dmax × 1
8h× 1

8w
R7 3D conv.16× 3× 3× 3× 32, stride 2 32× 1

16dmax × 1
16h× 1

16w
R8 3D conv.32× 3× 3× 3× 32 32× 1

16dmax × 1
16h× 1

16w
R9 R8+R7 32× 1

16dmax × 1
16h× 1

16w
R10 3D conv.32× 3× 3× 3× 64, stride 2 64× 1

32dmax × 1
32h× 1

32w
R11 3D conv.64× 3× 3× 3× 64 64× 1

32dmax × 1
32h× 1

32w
R12 R11+R10 64× 1

32dmax × 1
32h× 1

32w
R13 3D conv.64× 3× 3× 3× 128, stride 2 128× 1

64dmax × 1
64h× 1

64w
R14 3D transposed conv.128× 4× 4× 4× 64, stride 2 64× 1

32dmax × 1
32h× 1

32w
R15 R14+R11 64× 1

32dmax × 1
32h× 1

32w
R16 3D conv.64× 3× 3× 3× 64 64× 1

32dmax × 1
32h× 1

32w
R17 3D transposed conv.64× 4× 4× 4× 32, stride 2 32× 1

16dmax × 1
16h× 1

16w
R18 R17+R8 32× 1

16dmax × 1
16h× 1

16w
R19 3D conv.32× 3× 3× 3× 32 32× 1

16dmax × 1
16h× 1

16w
R20 3D transposed conv.32× 4× 4× 4× 16, stride 2 16× 1

8dmax × 1
8h× 1

8w
R21 R20+R5 16× 1

8dmax × 1
8h× 1

8w
R22 3D conv.16× 3× 3× 3× 16 16× 1

8dmax × 1
8h× 1

8w
R23 3D transposed conv.16× 4× 4× 4× 8, stride 2 8× 1

4dmax × 1
4h× 1

4w
R24 R23+R3 8× 1

4dmax × 1
4h× 1

4w
R25 3D conv.8× 3× 3× 3× 8 8× 1

4dmax × 1
4h× 1

4w
R26 3D transposed conv.8× 4× 4× 4× 4, stride 2 4× 1

2dmax × 1
2h× 1

2w
R27 3D transposed conv.4× 3× 4× 4× 1, stride (1,2,2) no IN,LeakyReLU 1

2dmax × h× w
Estimator

see equation in paper h× w

Table 1. Detailed architecture of DTC-SPADE. The residual blocks consist of two 2d convolutions followed by shortcut connections. The
convolutions and transposed convolutions, including these in the residual blocks, are followed by LeakyReLU with negative slope 0.2 and
Instance Normalization (IN) [7], unless explicitly stated otherwise. BN denotes Batch Normalization. The network receives as an input
left and right SBT stacks of size 15× 5× h× w and returns disparity tensor of size h× w

∆t [ms] n MDE, [cm] ↓ 1PA, [%] ↑

50 1 15.3±0.2 91.3±0.2
50 5 15.4±0.1 91.2±0.1
50 10 15.7±0.8 90.2±1.7

Table 2. Network (DTC-PDS) performance with different SBT
parameters.

3. Experiments on the MVSEC dataset
Training setup

Both DTC-PDS and DTC-SPADE are trained for 44
epochs with batch size 1 on a single NVIDIA Tesla V100
(32G) GPU. We use RMSprop optimizer. DTC module uses
learning rate of 0.005 while other modules use learning rate
of 0.001, both halve in epoch 15 and epoch 23. We apply
positive constraint on τ of the DTC module during training
for a stable accumulation of past history.

Experiments with different SBT parameters

For various dynamic scenes, n can be adjusted and the
input can be updated on single channel ([ft1 , ft2 ...ftn] →
[ft2 , ft3 ...ftn+1

]), enabling ∆t
n ms input resolution of the

network. The ground truth disparity of the MVSEC dataset
is 20 Hz, leading to our choice of a spanning time of
∆t = 50 ms for one SBT stack. In a stack, events form
n = 5 frames so the minimum temporal resolution of the
input is 10 ms. Ideally, increasing n maintains more tem-
poral information, but it also increases spatial sparsity of
the data and could make the training harder. We found the
network has slightly decreasing average precision when in-
creasing n, as shown in table 2.

CTC feature maps

The feature map of CTC is shown in Fig. 1. The feature
map aggregates its past states and gradually forms a denser
spatial representation. Compared to DTC, the feature map
of CTC have more uniformed color on background scenes,
due to a direct sum from the previous membrane potential
without normalization of the sigmoid activation function in
DTC. The bottom row shows four feature maps with dif-
ferent time constants at the end of evolution. Channels with
larger τ remember more history information than those with
smaller τ .

Random seed experiments for SPADE

DTC-PDS is the ablation model for DTC-SPADE since
all other parts of both networks are the same except for
SPADE. We trained DTC-SPADE with 3 different random
seeds and the result shows that SPADE can statistically im-
prove the network performance, with 1PA: 92.9±0.1, MDE:
13.5±0.1 on split 1 of the MVSEC dataset.

Method EO 1PE ↓ 2PE ↓ MAE ↓ RMSE ↓

EIS-EI [4] ✗ 5.814 1.055 0.396 0.905
EIS-ES [4] ✓ 9.958 2.645 0.529 1.222
DDES [6] ✓ 10.915 2.905 0.576 1.386
DTC-PDS ✓ 10.462 2.627 0.562 1.34
DTC-SPADE ✓ 10.256 2.716 0.558 1.35
DTC-PDS (×2) ✓ 9.517 2.356 0.527 1.264
DTC-SPADE (×2) ✓ 9.27 2.405 0.526 1.285

Table 3. Results on the DSEC dataset. EO denotes event-only in-
put for both training and inference. ×2 denotes twice the channel
number of DDES. For more comparisons and detailed evaluations
on individual sequences please refer to the DSEC disparity bench-
mark website [1].

Plot of Fig.4

We use ’jet’ colormap in python matplotlib with a scale
[0, 37], which corresponds to the disparity range of the
MVSEC dataset. The absence of qualitative comparison
with EITnet is because their code is not publicly available.
Besides, no colormap information was found in their paper,
we tried but were still unable to plot our result in the same
colormap as theirs.

Streaming experiments

In the streaming experiments, the entire test split
(including the test and the validation set, following the
setup of DDES [6]) of ’1’ (frame indices 140-1200) and ’3’
(frame indices 73-1615) are sequentially fed into the model,
which evolves an equal length of steps and estimates the
corresponding disparities. We then explicitly picked frame
indices belonging to the test set (obtained from the default
random seed from the released code of DDES) in standard
training setup to make an accurate statistic.
For the FPS calculation, the time consumption of SBT
is not considered. Event cameras such as Davis and
Prophesee are embedded with accumulator modules that
directly output event stacks in SBT or SBN, and in real
application this duration is minimum (< 0.1 ms tested with
Davis346). The recalculated FPS including SBT prepara-
tion (additional 2 ms on CPU) is 90 FPS for DTC-PDS and
57 FPS for DTC-SPADE.

4. Experiments on the DSEC dataset
For both DTC-PDS and DTC-SPADE network, we use

voxel grid method as in [2] to compress events within 100
ms into 10 frames as a frame stack and take two stacks as
the input. We randomly crop the input from 480×640 into
448×576 with probability of 50%. Because DSEC dataset
is much bigger than MVSEC dataset, we set the spatial em-
bedding channel to 128 (4 times larger than what we ap-
plied to the MVSEC dataset and 2 times larger compared

t = 1 t = 3 t = 6 t = 9

14 = 1.01 4 = 2.37 27 = 3.30 1 = 7.08

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Feature maps of CTC. The upper row shows the evolution of a feature map at four different time steps (t = 1, 3, 6, 9). The feature
map aggregates its past states and gradually forms a denser spatial representation. Compared DTC, the feature map of CTC have more
uniformed color on background scenes, due to a direct sum from the previous membrane potential without normalization of the sigmoid
activation function in DTC. The bottom row shows four feature maps with different time constants at the end of evolution. Channels with
larger τ remember more history information than those with smaller τ .

to DDES) and the maximum matching channel to 256 cor-
respondingly. We set the dmax for the matching volume to
128 (The default value for MVSEC was 64, corresponding
to max disparity 37 of the dataset. The max disparity of
the DSEC dataset is approximately 77, so we scaled dmax

twice larger accordingly). We use RMSprop optimizer and
learning rate 0.005 for the DTC module and 0.001 for the
rest of the network. We use multi-step scheduler with learn-
ing rate halve in epoch 11, 22 and 33. Preliminary results
(table 3) show that DTC-SPADE achieves state-of-the-art
performance among event-only methods.

References
[1] Dsec disparity benchmark. https://dsec.ifi.uzh.

ch/uzh/disparity-benchmark/. 3
[2] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide

Scaramuzza. Dsec: A stereo event camera dataset for driving
scenarios. IEEE Robotics and Automation Letters, 6(3):4947–
4954, 2021. 3

[3] Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela
Rus, and Radu Grosu. A natural lottery ticket winner: Rein-
forcement learning with ordinary neural circuits. In Interna-
tional Conference on Machine Learning, pages 4082–4093.
PMLR, 2020. 1

[4] Mohammad Mostafavi, Kuk-Jin Yoon, and Jonghyun Choi.
Event-intensity stereo: Estimating depth by the best of both
worlds. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4258–4267, 2021. 3

[5] WH Pressa, SA Teukolsky, WT Vetterling, and BP Flannery.
Numerical recipes 3rd edition: The art of scientific comput-
ing, 2007. 1

[6] Stepan Tulyakov, Francois Fleuret, Martin Kiefel, Peter
Gehler, and Michael Hirsch. Learning an event sequence em-
bedding for dense event-based deep stereo. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 1527–1537, 2019. 1, 3

[7] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 2

https://dsec.ifi.uzh.ch/uzh/disparity-benchmark/
https://dsec.ifi.uzh.ch/uzh/disparity-benchmark/

	. Numerical solution of continuous time convolution
	. Network Architecture
	. Experiments on the MVSEC dataset
	. Experiments on the DSEC dataset

