
Efficient Two-Stage Detection of Human–Object Interactions
with a Novel Unary–Pairwise Transformer Supplementary Materials

Frederic Z. Zhang1,3 Dylan Campbell2,3 Stephen Gould1,3

1The Australian National University 2University of Oxford
3Australian Centre for Robotic Vision

https://fredzzhang.com/unary-pairwise-transformers

A. Pairwise positional encodings

We describe the details of the pairwise positional encod-
ings as introduced in Section 3.1 of the main paper. For-
mally, denote a bounding box as b = [x, y, w, h]T ∈ [0, 1]4,
where x and y represent the centre coordinates of the bound-
ing box while w and h represent the width and height. Note
that these values have been normalised by the image dimen-
sions. For a pair of bounding boxes b1 and b2, we start by
encoding the unary terms besides the box representation it-
self, including box areas and aspect ratios as below

u = b1 ⊕ b2 ⊕
[
w1h1, w2h2,

w1

h1
,
w2

h2

]T
, (1)

where ⊕ denotes vector concatenation. We then proceed to
encode the pairwise terms as follows

p =

[
w1h1
w2h2

,IoU(b1,b2)

]T
⊕ f(dx)⊕ f(dy), (2)

dx =
x1 − x2
w1

, dy =
y1 − y2
h1

, (3)

f(d) = [ReLU(d),ReLU(−d)]T . (4)

This includes additional features such as the ratio of box ar-
eas, intersection over union (IoU) and directional encodings
that characterise the distance between box centers. Note
that the directional encodings are normalised by the dimen-
sion of the first (human) bounding box instead of that of
the image. In addition, function f(·) ensures the compo-
nentwise positivity of the feature vector. Finally, denote a
multi-layer perceptron as MLP, the complete pairwise posi-
tional encoding is computed as below

y = MLP(u⊕ p⊕ log(u⊕ p+ ε)), (5)

where ε is a small constant added to the vector to avoid tak-
ing the logarithm of zero.

B. Numerical stability in the loss function
For the sake of numerical stability, loss function for log-

its is often preferred to that for normalised scores. In our
case, due to the fact that the final interaction score is the
product of multiple factors, we cannot directly use the loss
function for logits. Therefore, we first need to recover the
scale prior to normalisation. Denote the normalised object
confidence score and action logit as ŷ1 ∈ [0, 1] and ŷ2 ∈ R
respectively, the final score is computed as ŷ = ŷ1 · σ(ŷ2),
where σ denotes the sigmoid function. We can then retrieve
the corresponding logit ỹ as below

ỹ = σ−1(ŷ), (6)

= log
(

ŷ1
1 + exp(−ŷ2)− ŷ1

+ ε

)
, (7)

where ε is a small constant added to the term to avoid taking
the logarithm of zero.

C. Multi-branch fusion
The multi-branch fusion (MBF) module [5] employs

multiple homogeneous branches, wherein each branch
maps the two input features into a subspace of reduced di-
mension and performs fusion (elementwise product by de-
fault). The resultant feature is then mapped back to the orig-
inal size. Afterwards, elementwise sum is used to aggregate
results across all branches. The reduced representation size
in a branch is intentionally configured in a way that makes
the total number of parameters independent of the number
of branches. For brevity of exposition, let us assume the
number of branches is 1, for two input vectors x,y ∈ Rn,
the output vector z ∈ Rn is computed as

z =WT
3 φ

(
(WT

1 x+ b1)⊗ (WT
2 y + b2)

)
+ b3, (8)

where W1, W2, W3 ∈ Rn×n and b1,b2,b3 ∈ Rn are pa-
rameters of linear layers, φ refers to the rectified linear unit
(ReLU), and ⊗ denotes elementwise product. The imple-
mentation for this module in PyTorch is shown in Listing 1.

1

import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiBranchFusion(nn.Module):
"""
Parameters:

appearance_size: int

Size of the appearance features
spatial_size: int

Size of the spatial features
hidden_state_size: int

Size of the intermediate representations
cardinality: int

The number of homogeneous branches
"""
def __init__(self,

appearance_size: int = 256, spatial_size: int = 256,
hidden_state_size: int = 256, cardinality: int = 8

) -> None:
super().__init__()
self.cardinality = cardinality
sub_repr_size = int(hidden_state_size / cardinality)
assert sub_repr_size * cardinality == hidden_state_size, \

"The given representation size should be divisible by cardinality"

self.fc_1 = nn.ModuleList([
nn.Linear(appearance_size, sub_repr_size) for _ in range(cardinality)])

self.fc_2 = nn.ModuleList([
nn.Linear(spatial_size, sub_repr_size) for _ in range(cardinality)])

self.fc_3 = nn.ModuleList([
nn.Linear(sub_repr_size, hidden_state_size) for _ in range(cardinality)])

def forward(self, appearance: torch.Tensor, spatial: torch.Tensor) -> torch.Tensor:
return torch.stack([

fc_3(F.relu(fc_1(appearance) * fc_2(spatial)))
for fc_1, fc_2, fc_3 in zip(self.fc_1, self.fc_2, self.fc_3)

]).sum(dim=0)

Listing 1. PyTorch implementation of the multi-branch fusion module.

Table 1. Performance comparison amongst different variants of the
cooperative layer on HICO-DET [1] test set under default setting.
All variants below use ResNet50 [3] as the backbone CNN. The
acronym M.E. stands for modified encoder layer.

Variant Full Rare Non-rare

Vanilla 31.15 ± .03 25.70 32.77
Vanilla w/ add. pos. enc. 31.14 25.59 32.80
M.E. w/o pairwise terms 30.93 24.53 32.84
M.E. w/ FFN 31.33 ± .04 26.02 32.91

D. Modified transformer encoder layer

In this section, we compare the performance and inter-
pretability of the modified transformer encoder layer to al-
ternative formulations. To this end, we test multiple variants
of the cooperative layer. In particular, we added a feedfor-
ward network (FFN) [4] to our modified encoder to better

align with the standard transformer architecture. As shown
in Tab. 1, using a vanilla transformer encoder results in a
small decrease (0.2 mAP) in performance. This gap persists
after applying additive positional encodings learned from
the unary box terms shown in Eq. (1). We then demonstrate
the importance of the pairwise terms in Eq. (2) by remov-
ing them from the positional encodings, which resulted in a
0.4 mAP decrease. Together, these results indicate that the
pairwise terms provide useful information for the coopera-
tive layer and a consistent mAP performance boost.

In addition, we show the attention maps in different vari-
ants of the cooperative layer in Fig. 1. Notably, our modi-
fied encoder (Fig. 1b) accurately infers the correspondence
between instances, where the interactive humans and ob-
jects attend to each other. This suggests that the pairwise
positional encoding instills an inductive bias in the modi-
fied encoder that allows it to identify interactive and non-
interaction pairs, and preferentially share information be-

2

(a) sample image (b) attn. map from M.E. (c) attn. map from M.E. w/o pairwise terms (d) attn. map from vanilla encoder

Figure 1. An image with detected instances (a) and attention maps in the cooperative layer with different implementations, including the
vanilla encoder (d), modified encoder w/o pairwise terms (c) and the modified encoder (b).

(a) Sample image (left) and the attention map (right) between pairs of unary tokens. (b) Sample image (left) and the attention map (right) between pairs of unary tokens.

(c) Attention map between pairwise tokens. (d) Attention map between pairwise tokens.

Figure 2. Our model exhibits the same behavior on sample images with numerous human and object instances. Specifically, the attention
map for unary tokens shows high symmetry, where potentially interactive instances attend to each other. And the pairwise attention map
indicates that non-interactive pairs attend to the most dominant pairs to be suppressed.

tween the interactive ones. Furthermore, we show that,
without the pairwise terms, as shown in Fig. 1c, the atten-
tion map becomes uniform along one dimension. Similarly,
the vanilla encoder does not make use of the pairwise spatial
information either. This results in the attention maps being
much less interpretable as shown in Fig. 1d. In particular,
there is no strong mutual attention between interactive in-
stances, but more attention between non-interactive ones.
The complete implementation of the modified encoder in
PyTorch is shown in Listing 2.

E. Additional qualitative results
We show more visualisations of attention maps in Fig. 2.

We intentionally avoided images with very few human
and object instances and instead selected those with more
complicated scenes for the purpose of demonstration. As
shown by the attention maps, our model behaves consis-
tently across different interaction types. More qualitative
results for detected HOIs can be found in Fig. 3 and Fig. 4.
We also show some false positives of our model in Fig. 5.

3

(a) holding a fork (b) jumping a ski (c) holding a teddy bear (d) petting a zebra (e) sitting on a chair

(f) riding an elephant (g) wearing a tie (h) swinging a tennis racket (i) holding a toothbrush (j) standing on a surfboard

Figure 3. Additional qualitative results for detected human–object pairs on HICO-DET [1] test set.

(a) carrying a backpack (b) cutting with a knife (c) drinking from a bottle (d) eating with a fork (e) holding a surfboard

(f) eating a hotdog (g) holding a knife (h) jumping a skateboard (i) kicking a sports ball (j) eating a pizza

(k) holding a tennis racket (l) reading a book (m) laying on a bed (n) sitting on a couch (o) riding a horse

(p) talking on a phone (q) working on a computer (r) riding a boat (s) throwing a frisbee (t) riding a motorcycle

Figure 4. Additional qualitative results for detected human–object pairs on V-COCO [2] test set.

(a) blocking a sports ball (b) flying an airplane (c) boarding an airplane (d) brushing with a toothbrush (e) washing a car

Figure 5. False positives on HICO-DET [1] test set.

4

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple

class ModifiedEncoderLayer(nn.Module):
def __init__(self, hidden_size: int = 256, repr_size: int = 256, num_heads: int = 8) -> None:

super().__init__()
if repr_size % num_heads != 0:

raise ValueError(
f"The given representation size {repr_size} "
f"should be divisible by the number of attention heads {num_heads}.")

self.sub_repr_size = int(repr_size / num_heads)
self.hidden_size = hidden_size
self.repr_size = repr_size
self.num_heads = num_heads

self.unary = nn.Linear(hidden_size, repr_size)
self.pairwise = nn.Linear(repr_size, repr_size)
self.attn = nn.ModuleList([nn.Linear(3 * self.sub_repr_size, 1) for _ in range(num_heads)])
self.message = nn.ModuleList([

nn.Linear(self.sub_repr_size, self.sub_repr_size) for _ in range(num_heads)])
self.aggregate = nn.Linear(repr_size, hidden_size)
self.dropout = nn.Dropout(0.1)
self.norm = nn.LayerNorm(hidden_size)

def reshape(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_heads, self.sub_repr_size)
x = x.view(*new_x_shape)

if len(new_x_shape) == 3: return x.permute(1, 0, 2)
elif len(new_x_shape) == 4: return x.permute(2, 0, 1, 3)
else: raise ValueError("Incorrect tensor shape")

def forward(self, x: torch.Tensor, y: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Parameters:

x: torch.Tensor

Unary tokens of size (N, K)
y: torch.Tensor

Pairwise positional encodings of size (N, N, K)
"""
device = x.device; n = len(x)
u = F.relu(self.unary(x))
p = F.relu(self.pairwise(y))
Unary features (H, N, K/H)
u_r = self.reshape(u)
Pairwise features (H, N, N, K/H)
p_r = self.reshape(p)
Generate indices for pairwise concatenation
i, j = torch.meshgrid(torch.arange(n, device=device), torch.arange(n, device=device))
Features used to compute attention (H, N, N, 3K/H)
attn_features = torch.cat([u_r[:, i], u_r[:, j], p_r], dim=-1)
Attention weights (H,) (N, N, 1)
weights = [F.softmax(l(f), dim=0) for f, l in zip(attn_features, self.attn)]
Repeated unary feaures along the third dimension (H, N, N, K/H)
u_r_repeat = u_r.unsqueeze(dim=2).repeat(1, 1, n, 1)
messages = [l(f_1 * f_2) for f_1, f_2, l in zip(u_r_repeat, p_r, self.message)]
aggregated_messages = self.aggregate(F.relu(

torch.cat([(w * m).sum(dim=0) for w, m in zip(weights, messages)], dim=-1)
))
aggregated_messages = self.dropout(aggregated_messages)
x = self.norm(x + aggregated_messages)
return x, weights

Listing 2. PyTorch implementation of the modified transformer encoder layer.

5

References
[1] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia

Deng. Learning to detect human-object interactions. In Pro-
ceedings of the IEEE Winter Conference on Applications of
Computer Vision, 2018. 2, 4

[2] Saurabh Gupta and Jitendra Malik. Visual semantic role la-
beling. arXiv preprint arXiv:1505.04474, 2015. 4

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 770–778, 2016. 2

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., volume 30, 2017. 2

[5] Frederic Z. Zhang, Dylan Campbell, and Stephen Gould. Spa-
tially conditioned graphs for detecting human-object interac-
tions. In Int. Conf. Comput. Vis., pages 13319–13327, October
2021. 1

6

