
Fine-tuning Global Model via Data-Free Knowledge Distillation
for Non-IID Federated Learning

Lin Zhang1,4 Li Shen2 Liang Ding3 Dacheng Tao2,3 Ling-Yu Duan1,4

1 Peking University, Beijing, China 2 JD Explore Academy, Beijing, China
3 The University of Sydney, Sydney, Australia 4 Peng Cheng Laboratory, Shenzhen, China

{zhanglin.imre, lingyu}@pku.edu.cn, {mathshenli, dacheng.tao}@gmail.com
ldin3097@sydney.edu.au

1. Supplementary
1.1. Exploration of Long-Tail problem

0.1 0.2 0.3 0.4 0.6 0.8 1.0 IID
 Value

20

40

60

80

100

Ac
cu

ra
cy

= 0.05

partitive accuracy
total accuracy

Figure 1. Test accuracy of model trained on class-imbalanced data.

0
500
1.0k
1.5k
2.0k
2.5k
3.0k

Ins
ta

nc
e N

um
be

r

3 1 2 4 7 10 9 6 5 8
Class ID

0
20
40
60
80

100

Ac
cu

ra
cy

model accuracy
pseudo data accuracy
of samples

Figure 2. Correlation of model accuracy, pseudo data accuracy
and the instance number on each class. Note that the class IDs are
ordered via the instance number.

To explore the influence of long-tailed data on model
performance, we train models using multiple subsets of CI-
FAR10, which have different degrees of imbalance. Here
the subset is generated by Dirichlet distribution Dir(β),
where a smaller β indicates more imbalanced data. The
data number of each subset is 5000, and the architecture
of the model is ResNet34 [2]. The results are illustrated in
Figure 1. Here, the curves in green and blue are the test ac-
curacy on total test data and partitive test data respectively,
where the distribution of partitive test data is the same as the
distribution of training data. We can see there is a perfor-
mance gap between two curves, and the gap becomes larger

when the degree of imbalance is increased. This is because
the model only learns the majority classes, and these classes
also dominate the partitive test data, thus the model achieves
high accuracy on partitive test data; whereas for the total test
data that contains balanced data for every class, the model
can not correctly predict the data of minority classes, thus
the model yields lower test accuracy on total test data. The
results in Figure 1 verifies that the model tends to learn ma-
jority data from imbalanced training data and ignore the mi-
nority classes. In the following, we term the model trained
using long-tailed data as “the biased model”.

To further explore the influence of the biased model on
pseudo data generation, we evaluate the accuracy of a bi-
ased model trained by a class-imbalanced CIFAR10 sub-
set, and the quality of pseudo data generated via the bi-
ased model. The data quality is displayed in terms of the
percentage of pseudo data that are correctly classified by a
well-trained classifier, which is trained on all data of CI-
FAR10 and achieves 81.38% test accuracy. The results are
illustrated in Figure 2. We can see that the model tends to
learn majority classes and yields extremely low even zero
accuracies for minority classes 7,10 and 9. Moreover, the
quality of pseudo data is highly related to original data dis-
tribution. For the minority classes, the test accuracy of the
pseudo data is less than 10%, i.e., the quality of the pseudo
data is even worse than random noise. This indicates that
the pseudo data generated via biased model could be in-
valid to conduct knowledge transfer, which motivates as to
customize the sample probability of label during data gen-
eration to facilitate effective knowledge transfer.

1.2. Visualization of Data Heterogeneity

In Figure 3, we figure out the data distributions of clients
that generated by Dirichlet distribution Dir(β) with differ-
ent β as well as IID data distributions. For each β value,
we display the data distributions of 10 clients. In Fig-
ure 3, the data distributions of clients are significantly dif-

1

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Data Distribution

(a) β = 0.1

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Data Distribution

(b) β = 0.3

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Data Distribution

(c) β = 0.6

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Data Distribution

(d) β = 1.0

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10
Cl

ie
nt

 ID
Data Distribution

(e) β = 10.0

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Data Distribution

(f) IID

Figure 3. Visualization of the instance number per class allocated to each clients (indicated by dot size), for different β values of Dirichlet
distribution Dir(β).

Table 1. The architectures of generators used in Section 4.1 ∼ Section 4.3.

(a) Generator for FedFTG and FedDF

z ∈ Rd ∼ N (0,1)
m =Map(y) ∈ RM , y ∈ [1, ...,M]

FC(z) → 4096
FC(m) → 4096

Concat → 8192

Reshape, BN → 128× 8× 8

Conv2D, BN, LeakyReLU → 128× 8× 8

Upsampling → 128× 16× 16

Conv2D, BN, LeakyReLU → 64× 16× 16

Upsampling → 64× 32× 32

Conv2D, Tanh → 3× 32× 32

(b) Generator for FedGen

z ∈ Rd ∼ N (0,1)
m =Map(y) ∈ RM , y ∈ [1, ...,M]

FC(z) → 4096
FC(m) → 4096

Concat, BN → 8192

FC, BN, LeakyReLU → 8192

FC → 512

ferent when β is small, and the client even has no data for
some classes. When β grows, the data is distributed more
evenly in each client, and the discrepancy of data distribu-
tions among clients becomes smaller.

1.3. Detailed Hyperparameters

Here we introduce the setting of hyperparameters for
baselines during experiments. For FedProx, the proximal
regularization parameter µ is 1e−4. α in FedDyn is 1e−2.
We set the local update round in SCAFFOLD following [1],
which is 50 according to our experiment setting. Follow-

ing [3], we set τ = 0.5, tune µ from {0.1, 1, 5} and report
the best result. For FedGen and FedDF, the learning rate
for the generator is the same as FedFTG, i.e., it is initialized
as 0.01 and is decayed quadratically with weight 0.998. As
Resnet18 only has one fully-connected layer, l in FedGen is
L− 1, where L is the total layer number.

1.4. Detailed Architecture of Generator

Table 1 lists the architectures of generators for FedFTG,
FedDF and FedGen used in Section 4.1 ∼ Section 4.3.
Here, d is the dimension of noise data z, and it is 100 and

Table 2. The architectures of generators used in Section 4.4.

(a) Generator for FedFTG and FedDF

z ∈ Rd ∼ N (0,1)
m =Map(y) ∈ RM , y ∈ [1, ...,M]

FC(z) → s2

FC(m) → s2

Concat → 2s2

Reshape, BN → 512× (s\16)× (s\16)
Conv2D, BN, LeakyReLU → 256× (s\8)× (s\8)
Conv2D, BN, LeakyReLU → 128× (s\4)× (s\4)
Conv2D, BN, LeakyReLU → 64× (s\2)× (s\2)

Conv2D, BN, LeakyReLU → 64× s× s

Conv2D, Tanh → 3× s× s

(b) Generator for FedGen

z ∈ Rd ∼ N (0,1)
m =Map(y) ∈ RM , y ∈ [1, ...,M]

FC(z) → s2

FC(m) → s2

Concat, BN → 2s2

FC, BN, LeakyReLU → s2

FC, BN, LeakyReLU → s2

FC → 512

Table 3. Evaluation of different FL methods on CIFAR10 and CIFAR100 (β = 0.6), in terms of the number of communication rounds to
reach target test accuracy (acc). Note that we highlight the best and second best results in bold.

CIFAR10 CIFAR100
acc = 75% acc = 80% acc = 40% acc = 50%

FedAvg 104.33±6.67 270.67±13.33 81.67±2.33 563.67±163.33
FedProx 109.67±8.33 263.0±27.0 81.67±11.33 476.00±199.00
MOON 102.67±1.33 252.33±32.67 83.67±3.33 354.00±21.00
FedDyn 72.67±7.33 133.33±28.67 56.00±6.00 213.67±6.33
SCAFFOLD 77.00±3.00 161.00±8.00 61.67±7.33 186.33±10.67
FedGen 114.00±8.00 284.33±30.67 82.00±5.00 571.33±78.67
FedDF 97.67±8.33 246.33±24.67 90.00±6.00 445.00±42.00
FedFTG 73.67±4.33 143.33±5.67 55.00±3.00 152.33±10.67

256 for CIFAR10 and CIFAR100, respectively. M is the
class number of datasets, and it is 10 and 100 for CIFAR10
and CIFAR100 respectively. The inplace of LeakReLU is
0.2 here. Note that in Table 1(b) the output of genera-
tor is 512-dimensional, as the input of the last FC layer in
ResNet18 is 512-dimensional. If using the other classifiers,
the dimension of the generator’s output should be adjusted
accordingly.

Table 2 lists the architectures of generators used in Sec-
tion 4.4. Here d = 256 for all the datasets MIO-TCD,
CompCar and Tiny-ImageNet. s is the image size, and s =
112, 112, 64 for MIO-TCD, CompCar and Tiny-ImageNet
respectively. Note that for the experiments of VGG11 in
Table 3 in the main paper, we also adopt these two genera-
tors for FedDF, FedGen and FedFTG.

1.5. Supplementary Experiment Results

Table 3 illustrates the communication rounds of different
methods to reach the target test accuracy (75% and 80% for
CIFAR10, 40% and 50% for CIFAR100) when β = 0.6,
which is a supplement to Table 2 in the main paper. Same
as Table 2, FedFTG achieves the second best and the best
convergence for CIFAR10 and CIFAR100 respectively. Be-
sides, it greatly reduces the round numbers required by its
FL optimizer SCAFFOLD.

Table 4. Test Accuracy (%) of different methods on CIFAR10
using VGG11 and ResNet34 networks (β = 0.3).

VGG11 ResNet34
FedAvg 82.05±0.59 80.48±0.89
FedProx 82.10±0.53 81.02±0.53
FedDyn 85.38±0.44 81.13±1.11
MOON 83.69±0.76 81.15±0.46
SCAFFOLD 86.78±0.37 83.31±0.71
FedGen 84.38±0.56 80.72±0.44
FedDF 84.71±0.78 81.20±0.46
FedFTG 87.46±0.49 85.00±0.45

Table 4 displays the test accuracy when adopting
VGG11 [4] and ResNet34 [2] as the classifier. In this ta-
ble, FedFTG yields the best performance in all scenarios,
which validates the effectiveness of FedFTG on various ar-
chitectures of deep neural network.

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew

Mattina, Paul Whatmough, and Venkatesh Saligrama. Fed-
erated learning based on dynamic regularization. In Interna-
tional Conference on Learning Representations, 2020. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1, 3

[3] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive
federated learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10713–10722, 2021. 2

[4] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

	. Supplementary
	. Exploration of Long-Tail problem
	. Visualization of Data Heterogeneity
	. Detailed Hyperparameters
	. Detailed Architecture of Generator
	. Supplementary Experiment Results

