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In this supplementary material, we ask the following
questions. Then we give answers to the above questions,
one section for each question.

• Why we choose to develop a CNN-based model rather
than a transformer-based one?

• How does vanilla assignment (instead of instance-level
assignment) work with the proposed instance-aware
representation learning?

• How can Group R-CNN be improved with weakly-
labeled images (only with point annotations)?

• To what extent does Group R-CNN outperform semi-
supervised object detection methods?

• Can Group R-CNN generalize well on other bench-
marks like VOC?

• What are the limitation and negative social impacts of
Group R-CNN?

1. Motivation: Inferior Performance of DETR
When Data Lacks

One of our motivations to develop a CNN-based model
is that transformer-based models cannot generalize well
when trained with insufficient data. We provide experi-
mental results to support this argument. Specifically, we
train two representative CNN-based object detectors (Faster
R-CNN [6] and RetinaNet [5]) alongside a transformer-
based detector (DETR [2]) with various percentages of im-
ages (labeled with bounding boxes) in a supervised fash-
ion. They have similar performance when the entire COCO
dataset is used. However, CNN-based detectors, especially
the two-stage detector, are significantly better than DETR
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Figure 1. Convergence Analysis of Different Detectors

when training data is limited (see Figure 1). The gap be-
tween CNN-based detectors and the transformer-based de-
tector becomes larger when the number of labeled images
decreases. It implies that the transformer-based model per-
forms poorly in the case of data scarcity, but our pipeline in-
volves training a point-to-box regressor with limited data,
so it motivates us to develop a CNN-based regressor.

2. Vanilla Assignment with Instance-aware
Representation Learning

In this work, we propose instance-aware feature en-
hancement and instance-aware parameter generation to
comply with instance-level proposal assignment. We show
that vanilla assignment is ineffective even with the above
two strategies, demonstrating the necessity of instance-level
assignment. We report the results of combining vanilla
assignment with instance-aware feature enhancement and
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Figure 2. The Pseudo-Labelling pipeline of Group R-CNN. At each iteration, a weakly-labeled image is first forward to the model to
obtain pseudo bounding box annotations. Next, a point is randomly sampled within each pseudo bounding box as pseudo point annotation.
Finally, the model is trained with pseudo point annotations and pseudo annotations in the same fashion as training with well-labeled images.

instance-aware parameter generation. Specifically, we eval-
uate the performance of the baseline (using instance group-
ing and vanilla assignment) when additionally incorporat-
ing: (1) detaching FPN [4], (2) additional projection convo-
lution (PC, also in Table 4, Section 4.2 of the main submis-
sion), (3) relative coordinates (RC) and (4) dynamic group
convolution (DGC). For all experiments in this section, we
exclude the default RoI sampling procedure to keep the size
of instance group fixed to facilitate parallelization, so there
is a slight performance drop (from 36.6 to 36.2) for Cascade
R-CNN [1] when exploiting instance grouping.

Table 1 shows the results of adding each component to
the baseline. It can be seen that most of our designs only
bring marginal or no improvement over the baseline, and
the detaching strategy even hurts the performance. When
replacing instance-level assignment in Group R-CNN with
the vanilla assignment and removing detaching (the last row
in Table 1), the model only achieves 37.2 mAP, which is sig-
nificantly lower than Group R-CNN with the instance-level
assignment (39.2 mAP). Hence, the instance-level assign-
ment is an essential building block of Group R-CNN.

3. Improving Group R-CNN with Weakly-
Labeled Images

To compare fairly with Point DETR [3], we follow
their setting and train our point-to-box regressor Group R-
CNN with only well-labeled images. However, our pro-
posed framework is general and thus it is also possible to
exploit weakly-labeled images during training, similar to
semi-supervised learning (pseudo-labeling). The pipeline

is shown in Figure 2. At each iteration, for the weakly-
labeled images, we first generate pseudo-bounding boxes
with the Group R-CNN. Then, the generated boxes play
the same role as those in well-labeled images. That said,
we randomly sample a point within the pseudo bounding
box to be the pseudo point annotation. Now the model can
be trained with both weakly-labeled (with pseudo points
as inputs and pseudo boxes as targets) and well-labeled
images (with sampled points as inputs and human-labeled
boxes as targets). We set the ratio between well-labeled im-
ages and weakly-labeled ones to 1:1 and the losses from
weakly-labeled images are weighted by 0.5. We train Group
R-CNN with the conventional multi-scale training for 50
epochs. Notice that we do not include any advanced strate-
gies in the latest semi-supervised learning literature such
as exponential moving average [?] and strong augmenta-
tion [?].

As shown in Table 2, training with both well-labeled
and weakly-labeled images achieves a 2.6 mAP improve-
ment. Even though our pseudo-labeling pipeline does not
include any advanced designs in semi-supervised methods,
the results already show that such a pipeline is plausible and
could yield better performance than our point-to-box regres-
sor trained without using the weakly-labeled images (with
only point annotations).

4. Comparing with Vanilla Semi-Supervised
Learning

In this work, we study weakly semi-supervised learn-
ing with point annotations. The key difference from vanilla



Table 1. Using Vanilla Assignment Strategy in Group R-CNN

mAP AP@50 AP@75
Casecade R-CNN + Instance Grouping 36.2 60.9 37.6

w/ deteaching 34.5 59.4 35.4
w/ 1 projection conv 36.6 60.6 38.4

w/ relative coordinates 36.2 60.7 37.7
w/ 1 dynamic group convolution 36.6 61.5 38.4
Group R-CNN w/ vanilla assign 37.2 61.6 38.8

Group R-CNN 39.2 65.7 41.0

Table 2. Training Group R-CNN in a Semi-Supervised Fashion

mAP AP@50 AP@75
w/o pseudo-labelling 39.5 66.5 41.1
w/ pseudo-labelling 42.4 69.0 44.7

semi-supervised learning is that instead of using unlabeled
images without any form of annotations, we use weakly-
labeled images with point annotations. We compare the
performance of using weakly-labeled images and unlabeled
images under STAC [7], a semi-supervised object detection
pipeline. STAC first trains a teacher model with only well-
labeled images and produces fixed pseudo bounding boxes
for unlabeled images. Then the pseudo bounding boxes
are used to train a student model. We replace the pseudo
bounding box produced by STAC with the ones generated
by Group R-CNN to demonstrate the advantage of point an-
notations. To keep the fairness of comparison, we adopt
the same strategy and hyperparameters (including augmen-
tation, training steps, batch size et al.) as STAC when train-
ing the student model using the generated offline pseudo
bounding boxes. We evaluate the performance with 10%
well-labeled images from MS-COCO.

Using pseudo bounding boxes produced by Group R-
CNN improves the student mAP by 5.4 mAP (from 28.7
to 34.1), which shows that the quality of pseudo bounding
boxes produced by point annotations is significantly better
than those generated directly from unlabeled images. The
experimental results validate the efficacy of point annota-
tions under the semi-supervised setting.

5. Experiments on VOC datasets
We achieve 76.2 AP on VOC07+12 with 50 % point an-

notation and 50% box annotation. For reference, the AP
of only 50% boxes and 100% boxes is 73.5% and 77.4%,
respectively

6. Limitation and Social Impact
In this work, we follow the pipeline of Point DETR to

tackle the problem of weakly semi-supervised object detec-

tion with points. Specifically, the pipeline involves: training
a point-to-box regressor on well-labeled images, generat-
ing pseudo bounding boxes on weakly-labeled images, and
training an object detector with the combination of well-
labeled images and weakly-labeled images. The focus of
this work is to develop a more accurate point-to-box re-
gressor. However, when training such a regressor, only the
well-labeled images are used. It is also possible to incorpo-
rate weakly-labeled images in the regressor training with a
self-training fashion.

The potential social impact of this work inherits from
object detection. Annotation costs are significantly reduced
with weakly point annotations but with our method, it is
still possible to train a promising object detector with sig-
nificantly lower labeling costs. Consequently, undesired ap-
plications of object detection systems such as surveillance
may be more accessible. Note that any advances in object
detection and low-label learning paradigm could result in
similar social impacts.
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