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Table 1. Denoising performance (PSNR/SSIM) on binomial (B)
and impulse noise (I). The experiment on Kodak and BSDS300
dataset shows consistent results. Best and second best results are
highlighted and underlined.

Dataset Noise N2N [2] Supervised Ours

Kodak
B 31.48 / 0.939 31.84 / 0.946 31.63 / 0.944
I 36.04 / 0.975 35.83 / 0.978 34.92 / 0.977

BSDS300
B 31.50 / 0.930 32.32 / 0.938 32.18 / 0.936
I 36.55 / 0.976 37.48 / 0.980 37.40 / 0.979

A. Experiments on other synthetic noises

Binomial and impulse noise. We experiment with an-
other two point-wise noise types, binomial noise and im-
pulse noise following the setup of N2N [2]. They can be
used to model bad pixels and hot pixels in raw images, re-
spectively. Binomial noise is constructed from the pixel-
wise production of a clean image with a random 0-1 mask.
It uses a one-channel mask to set some pixels to zeros with
probability p and retain other pixels’ values. For impulse
noise, it randomly sets some pixel channels to 0 or 1 with
probability p while keeping the other colors. Some exam-
ples are shown in Fig. 2. During training, we uniformly set
p ∈ [0, 0.95] for both binomial noise and impulse noise to
train models on a range of noise levels. During inference,
we follow the setting of N2N [2] and fix p = 0.5. Since they
are not zero-mean noises, we have to use different losses for
training as recommended in N2N.

The results are shown in Table Fig. 2.Similar to the re-
sults on Gaussian noise, our method still outperforms N2N
in most cases. N2N produces better results on binomial de-
noising in the Kodak dataset, which shows 0.2 dB improve-
ment than supervised learning. But it cannot show stable
performance when testing on the larger BSDS300 dataset.
Correlated noise. Most previous methods assume that the
noise is pixel-wise independent so that the spatially corre-
lated noise is less explored. Our method only requires the

Table 2. The comparison between our method and the refined
BM3D [4] on correlated noise. Best results are highlighted. (See
the text for more details.)

Dataset Kernel BM3D [4] Ours

Kodak

g1 31.56 / 0.900 37.46 / 0.976
g2 29.20 / 0.798 33.10 / 0.929
g3 31.38 / 0.857 41.88 / 0.993
g4 27.23 / 0.742 28.60 / 0.803
g5 26.53 / 0.859 32.97 / 0.973

BSDS300

g1 26.77 / 0.841 29.83 / 0.922
g2 27.84 / 0.787 31.28 / 0.910
g3 29.59 / 0.838 38.22 / 0.982
g4 26.14 / 0.722 27.39 / 0.793
g5 26.31 / 0.870 33.69 / 0.974

noise model no matter whether it is pixel-wise independent
or not. We compare our method with the recently refined
BM3D [4] on several typical correlated noises. The spa-
tially correlated noise can be created as follows:

x = y + v ⊗ g, v ∼ N (0, 1), (1)

where x and y denote the noisy and clean images, v is
the random noise generated from a normal distribution with
zero mean and σ = 1, and g is the convolution kernel for
creating the correlated noise. Following the refined BM3D
[4], we use 5 types of kernels for comparison.

Some qualitative results are shown in Fig. 4. More re-
sults and kernel visualization are provided in the supple-
mentary materials. We also use BSDS300 as our sRGB
benchmark and evaluate the default noise level σ = 5 for
all correlated noise. The refined BM3D is noise-aware and
our models are trained on σ = 5. In Table 2, we show the
quantitative results on correlated noise. Our methods can
deal with spatially correlated noise and outperform the re-
fined BM3D by a large margin.

B. More ablation studies
The generality to Transformer and other CNNs. In the
above experiments, we follow N2N [2] and only use U-



Table 3. The Gaussian denoising results (PSNR/SSIM) of our
method when using different network architectures. All models
are trained with the same training settings.

Models σ = 25 σ = 50 FLOPS(G)

U-Net 31.84 / 0.875 28.71 / 0.787 6.0
SCN [1] 32.23 / 0.879 29.11 / 0.795 54.5
MPRNet [5] 32.59 / 0.887 29.51 / 0.808 300.6

Swin [3] 32.22 / 0.878 29.04 / 0.792 16.0

Table 4. The training time (hours) and PSNR comparison be-
tween the full version and fast version iterative data refinement.
“IDR-n” denotes the testing results after the n-th iteration in the
full version iterative data refinement (IDR). “Fast” denotes fast
IDR.

Model IDR-1 IDR-2 IDR-3 IDR-4 IDR-5 Fast

PSNR 24.84 28.01 31.35 31.48 31.49 31.50
Time 8.3 16.6 24.9 33.2 41.5 8.6

Net as our backbone. Here, to show the generality of our
method, we adopt both Swin Transformer [3] and recent
CNN-based architectures (SCN [1] and MPRNet [5]) in our
iterative algorithm. To reduce the training time, we train
those heavy models for 20k iterations and other settings are
the same as our Gaussian denoising experiment. As shown
in Table 3, using larger CNN-based denoising models in our
IDR can always produce better results. Swin Transformer
shows comparable results as the SCN but with much fewer
flops. This indicates our method can well adapt to both
CNN and transformer architectures, and it can be further
improved by advanced architectures.
Comparison between IDR and fast IDR. In Table 4, we
show the intermediate testing results and the correspond-
ing training time cost of our full version IDR on Gaussian
denoising. After about 5 full iterations, the full version
method converges and shows quite similar performances as
the fast IDR. But, due to the one-epoch training and the
accumulative training strategy of the fast IDR, the training
time is quite close to the full version algorithm.

C. More details of SenseNoise-500 dataset

To ensure that the collected pairs have the same bright-
ness levels, the long-exposure and normal-exposure frames
are captured with the same target sensitivity value. Specif-
ically, for the noisy images (normal-exposure), all of them
use the default exposure time and ISO recommended by the
smartphone (Xiaomi MI9). And, the long-exposed frames
are captured with the exposure time tl starting from 1s and
up to 2s, and they keep the same target sensitivity value S

via a dynamic ISO ISOl:

tl = max

(
min

(
S

100
, 2

)
, 1

)
, ISOl =

S

tl
, (2)

where S = ISOr × tr is the fixed target sensitivity value,
ISOr and tr are recommended ISO and exposure time for
noisy images, and S

100 is the estimated maximum expo-
sure time and it would be clipped to be within [1s, 2s]. To
demonstrate the quality of our dataset, we show the extreme
indoor and outdoor examples in Fig. 1.

Object motion: We carefully avoid capturing dynamic
scenes and light changing scenes and remove unsatisfied
scenes when we construct the dataset. As for occasional
slight object motions (pixel-level), they may cause some ab-
normal pixel values across the temporal dimension around
the motion areas. But those outliers can be removed natu-
rally since we use the median filter along the temporal di-
mension to create the ground truth.

OIS: We used Xiaomi Mi 9 with the IMX586 sensor to
collect the dataset. The lens optical stabilization mode can
be disabled via camera2 API, which is particularly helpful
to capture long-exposure images.

The noise levels and diversity: We write an App to
show the real-time exposure information on the screen. This
helps us to cover a wide range of ISOs. We follow the ad-
vice to compare the SNR and the standard deviation (STD)
of SNR. SenseNoise-500 SNR range: [−12.94, 5.79] STD:
11.54. SIDD SNR range: [−12.72, 4.57] STD: 11.05. This
indicates that our dataset covers a wider range and keeps
better diversity compared with the SIDD dataset.

GT quality: Since the scene contents and exposure strat-
egy vary greatly for different datasets, we are unable to
compare the SNR of their ground truth directly. The GT
for most noisy scenes (ISO25600) can be founded in Fig. 1.

D. Performance gain from large-scale unla-
belled data

We add an experiment to compare supervised baseline
(UNet and following Table 4’s settings) using limited data
with the unsupervised training and large-scale unlabeled
data on Gaussian noise (Tab. 5). All data are from Ima-
geNet. The data size for supervised methods is set to 0.5k
since existing denoising datasets generally contain hun-
dreds of images. When using the same training scale (0.5k),
our method produces slightly lower performance than the
supervised method on Gaussian noise. Scaling up the unla-
beled data size (50k) helps to improve the performance by
∼0.2dB over supervised training with limited data.
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Snapdragon 855 SoC built-in ISP Noisy Ground truth

Figure 1. Examples from the SenseNoise-500 dataset. Even in the extreme low-light indoor (ISO 25600) and outdoor (ISO 24379) scenes,
our ground truths are still of high-quality.

(a) Binomial noise (p = 0.5)

(b) Impose noise (p = 0.5)
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Figure 2. Visualization of removing binomial and impulse noise with the corrupted probability p = 0.5. While we only use individual
noisy images for training, our qualitative results are very closed to supervised learning.



(a) SID dataset

(b) SenseNoise dataset
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Figure 3. Qualitative results of raw image denoising on SID dataset and our SenseNoise-500 dataset.
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Figure 4. Visualization of five correlated kernels and denoising results on different noise levels. We compare our method with the new
BM3D [4] designed for correlated noise.


