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1. Neural network structures
Neural SDF SΘs

: x −→ (S,f). We use an 8-layer MLP of
width 256 and a skip connection at the 4th layer. The input
3D location x is encoded by positional encoding using 6
frequencies to compensate the spectral bias of MLPs [2, 4].

Neural diffuse albedo βΘβ
: (x,n,n,f) −→ β. We use a

8-layer MLP of width 256 and a skip connection at the 4th
layer. The input 3D location x is positional-encoded using
10 frequencies. The second surface normal n (equals the
viewing direction in the first stage of volumetric radiance
fields rendering) is positional-encoded using 4 frequencies.

Neural specular albedo κΘκ : (x,n,f) −→ κ. We use a 4-
layer MLP of width 256, with input 3D location x positional-
encoded using 6 frequencies.

Neural roughness αΘα
: (x,n,f) −→ α. We use a 4-layer

MLP of width 256, with input 3D location x positional-
encoded using 6 frequencies.

2. Implementation details
We implement our BRDF by following the Mitsuba rough-

plastic BRDF implementation [1] closely. The distribution
parameter in Mitsuba roughplastic BRDF is chosen as “ggx”,
while the intIOR, extIOR, and nonlinear parameters are set
to their default values.

During the volumetric radiance field rendering optimiza-
tion stage, we train for 100k iterations using 512 randomly
sampled pixels at each iteration with ℓ1 image loss and the
eikonal regularization loss (weight λ1 = 0.1). During the
edge-aware physics-based surface rendering stage, we set
the eikonal loss weight λ1 = 0.1, and the roughness range
loss weight λ2 = 0.1. We set τ = 1e−2 for the depth
gradient magnitude threshold, K = 16 for the maximum
number of surface walk steps, ϵ = 1e−3 for the step size,
and δ = 5e−2 for the dot-product threshold when localizing
edge points. At each training iteration, we render a random
128× 128 image patch to compare with ground truth. The
number of Gaussian pyramid levels for ℓ2 image loss is set

to 4. We train the second stage for 50k iterations. The two
stages take ∼10 hours on a single NVIDIA RTX2080Ti GPU
with 12G memory.

3. Proof of edge point re-parametrization
In this section, we prove the correctness of our edge point

re-parametrization in Eq. (4) of the main paper. Our proof
strategy is similar to the differentiable ray-surface intersec-
tion in [3, 5], and divided into 3 steps: 1) re-parametrize the
edge point in terms of the target moving direction, then show
both 2) the function value and 3) the first derivative value
under current parameter setting.

First, we note that our goal is to move a 3D edge point x
along its surface normal direction n; hence:

xΘs
= x+ tΘs

· n. (1)

Second, we note that under current parameter setting, i.e.,
Θs = Θ(0)

s , we have:
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This is to say that the function xΘs
evaluated at Θ(0)

s equals
the edge point location x. Substituting Eq. 1 into Eq. 2 gives:
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Third, we note that xΘs
must stay on the zero level set

during deformation:
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Implicit-differentiate with respect to Θs on both sides, and
we have:
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Figure 1. Reconstructed meshes and materials for the real scenes by our IRON system.

Differentiating both sides of Eq. 1 with respect to Θs gives:

∂x

∂Θs
= n

∂t

∂Θs
. (6)

Substituting Eq. 6 into Eq. 5 gives us:
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Evaluating Eq. 7 at Θ(0)
s , substituting n = ∂S

∂x
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Eq. 2, we have:
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Rearranging a bit, we have:
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Finally, we conclude our proof by observing that
Eqns. 3,9 gives us the first order approximation of tΘs

:

tΘs = − 1

nTn
· SΘs(x). (10)

Substituting Eq. 10 into Eq. 1 leads to our proposed edge
point re-parametrization:

xΘs
= x− n

nTn
· SΘs

(x). (11)

We note that xΘs only provides unbiased first-order gradient
with respect to Θs suitable for gradient-based optimizers.

4. Reconstructed meshes and materials
In Fig. 1, we show the reconstructed meshes and materials

for the 5 real-world scenes used in this work.

5. Comparison with PhySG
First, note there are a few key limitations to PhySG that

our method can overcome. Namely, unlike our method,
PhySG requires input object segmentation masks. Our
method can also handle spatially-varying specular roughness,
whereas PhySG assumes a constant and uniform specular
lobe shape. Because PhySG assumes static environmental
lighting, we used Mitsuba to render the same object from
the same set of viewpoints first using a collocated flash (to
run our method), and then with environmental lighting (to
run PhySG). See Fig. 2 and the caption for an example com-
parison.

Figure 2. For the horse object, our method recovers much more
accurate geometry details than PhySG; chamfer L1 distances are:
Our IRON (5.35e-4) vs. PhySG (18.67e-4).
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