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1. Implementation Details
1.1. Network structure

We propose Inertia Guided Flow Completion (IGFC)
network to complete the optical flows, which are calcu-
lated using RAFT [7]. For the flow guided gradient warp
stage, we adopt DeepFillV1 [10] to complete the occlusion
regions, and we use our designed Adaptive Style Fusion
Network (ASFN) to refine the style of the warped gradi-
ents for spatial coherence. We illustrate the detailed net-
work structure of our proposed IGFC and ASFN in Tab 1
and Tab 2.

In IGFC, we adopt the matching network and the tem-
poral modulation modules to aggregate the inertia guided
aligned flow features. These two networks are adapted
from [8]. Specifically, the matching net aims to generate
the spatial adaptive attention maps between the target flow
feature and the reference flow features. The temporal modu-
lation component modulates the generated spatial adaptive
attention maps along the temporal dimension. Given the
features from the target flow Ft and the reference flows Fr,
the fusion process can be denoted as:

F̂t = (1−Mt)� Ft +Mt �
T∑

i=1

FriAri (1)

whereAri represents the i-th attention map generated by the
matching net and the temporal modulation module, while
Fri represents the i-th feature map from Fr. Mt denotes
the corresponding mask of Ft, and � means the Hardmard
product. We only update the corrupted regions of Ft to
maintain the coherence in the valid regions.

1.2. Ternary census transform loss (TCT loss)

We adopt the TCT loss to supervise the completed op-
tical flows based on the warping quality between the their
corresponding images.

Suppose we restore the forward optical flow F̂t, which
describes the motion field between ground truth frames It
and It+1. We use the backward warping to warp It+1 to

It with the completed optical flow F̂t, and get the warped
frame It+1→t. Given the frames It+1→t and It, we first
transform them into the gray images gt+1→t and gt. For
each pixel in the gray images, we extract a p × p patch
around the pixel and compare each surrounding pixel with
the center. We illustrate such operation with gt for simplic-
ity, which can be formulated as,

Tt[i, j, :] =
√
(C(gt[u, v]− gt[i, j]))2

−p
2
≤ u, v ≤ p

2

(2)

Tt represents the census transformed image from gt, while
C represents the concatenation operation. If the shape of gt
is H ×W , the shape of the ternary census transformed im-
age Tt will be H ×W × p2 (we pad gt to make each point
can be cropped into patches). We also apply such operation
to gt+1→t to get Tt+1→t. After we calculate the ternary cen-
sus transformed maps, we calculate the hamming distance
between them.

D =

p2∑
c=0

(Tt+1→t[:, :, c]− Tt[:, :, c])2 (3)

Since we don’t care about the warping in the valid re-
gions, we utilize the corresponding mask Mt to filter out
the invalid regions. To filter out the occlusion regions, we
warp the frame It+1 with the non-corrupted optical flow
Ft→t+1 and calculate the difference between the warped
frame It+1→t and the frame It in order to locate the oc-
clusion regions, which is calculated as,

m = exp(α ·
∑

(It+1→t − It)2) (4)

where α is a negative constant, which indicates the mag-
nificent to penalize the occlusion regions, and empirically
set to −50. Combining the equation 2, 3 and 4, we calcu-
late the TCT loss for all the completed flows under different
resolutions to supervise the flow completion under multi-
ple resolutions. We take the average of these losses to form
Lter. We illustrate the calculation in the original resolution
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Module Block Filter size In channels Out channels Stride/Up Dilation

Encoder

2DConv (5,5) 3 64 1 1
2DConv (3,3) 64 128 2↓ 1
2DConv (3,3) 128 128 1 1
2DConv (3,3) 128 256 2↓ 1

ResBlocks×4 (3,3) 256 256 1 1

Matching Net

2DConv (1,1) 256 64 1 1
2DConv (1,1) 256 64 1 1
2DConv (3,3) 128 192 1 1
2DConv (3,3) 192 256 2↓ 1
2DConv (3,3) 256 256 1 1
2DConv (3,3) 256 128 1 1
2DConv (3,3) 128 64 2↑ 1
2DConv (3,3) 64 1 1 1

Temporal modulation 2DConv (1,1) n n 1 1

1/4 resolution reconstruction

2DConv (3,3) 256 256 1 8
2DConv (3,3) 256 256 1 4
2DConv (3,3) 256 256 1 2
2DConv (3,3) 256 256 1 1
2DConv (3,3) 256 2 1 1

1/2 resolution reconstruction

2DConv (3,3) 512 128 2↑ 1
2DConv (3,3) 128 128 1 1
2DConv (3,3) 128 128 1 1
2DConv (3,3) 128 2 1 1

Full resolution reconstruction
2DConv (3,3) 256 64 2↑ 1
2DConv (3,3) 64 32 1 1
2DConv (3,3) 32 2 1 1

Table 1. The structure of the IGFC. The “Matching Net” and the “Temporal modulation” parts correspond to the “Feature fusion” part
in the main paper. These two components are adapted from [8]. We use these two components to aggregate the features from the inertia
warped flows. “n” represents the number of the optical flows to be processed. The input dimension is 3 because we concatenate the optical
flows and their corresponding masks. ↓ means the downsampling operation, while ↑ means the upsampling operation. Skip connection is
inserted before the first block in the “1/2 resolution reconstruction” and the “Full resolution reconstruction” module.

Module Block Filter size In channels Out channels Stride/Up Dilation

Encoder

2DConv (5,5) 3 64 1 1
2DConv (3,3) 64 128 2↓ 1
2DConv (3,3) 128 128 1 1
2DConv (3,3) 128 256 2↓ 1

Middle ASF module×4 - 256 256 1 1

Decoder

ResBlock×2 (3,3) 256 256 1 1
2DConv (3,3) 512 128 2↑ 1
2DConv (3,3) 128 128 1 1
2DConv (3,3) 256 64 2↑ 1
2DConv (3,3) 64 32 1 1
2DConv (3,3) 32 2 1 1

Table 2. The structure of the ASFN. We use the network to correct the style of the warped gradients with the guidance of the valid regions.
Skip connection is inserted in the first and the third convolution block in decoder. The detailed structure of the ASF module can be viewed
in the main paper.



for simplicity, and the calculation in other resolutions can
be extended straightforwardly.

Loriginal
ter =

‖D �m�Mt‖1
‖Mt‖1

(5)

1.3. Gradient warping procedure

Given the corrupted video frames and the completed op-
tical flows, we extract the gradients from the video frames
in x and y direction, and warp the valid regions of the gra-
dients to fill the corrupted regions with the corresponding
bidirectional completed flow in a chain-like manner, which
means we reuse the content warped from other frames and
may propagate it to the others. Therefore, for each frame
except the head and the tail in the video, we can obtain the
forward and the backward warped gradient maps in x and y
directions. We fuse the forward and backward propagated
gradient maps in each direction with the forward-backward
consistency checked by the completed flow pair. Given the
completed optical bidirectional flows F̂t−1→t and F̂t→t−1,
the forward-backward consistency check is illustrated as,

k = F̂t→t−1(p)

D̂t→t−1(p) =
∥∥∥k + F̂t−1→t(p+ k)

∥∥∥2
2

(6)

where p the sampled point, k is the mesh warped from frame
t to frame (t − 1), and D̂t→t−1 is the cycle consistency
checked with the chain of t → (t − 1) → t. For the cycle
consistency map between frame t and frame (t+1), replace
(t− 1) in equation 6 with (t+ 1).

We calculate the weight map ωt→t−1 and ωt→t+1 for
gradient fusion with the consistency error map D̂t→t−1 and
D̂t→t+1, which can be formulated as,

ωt→t−1 =
exp(−D̂t→t−1/d)

exp(−D̂t→t−1/d) + exp(−D̂t→t+1/d) + ε

ωt→t+1 =
exp(−D̂t→t+1/d)

exp(−D̂t→t−1/d) + exp(−D̂t→t+1/d) + ε

(7)
where d is the temperature coefficient and ε is an extremely
small value to avoid division by zero error. We set d to
0.1 and ε to 1e-7. Given the warped gradient map ∇xĨt−1,
∇xĨt+1, ∇y Ĩt−1 and ∇y Ĩt+1, we fuse the gradient maps
with the weight maps ωt→t−1 and ωt→t+1

∇xĨt = ωt→t−1∇xĨt−1 + ωt→t+1∇xĨt+1

∇y Ĩt = ωt→t−1∇y Ĩt−1 + ωt→t+1∇y Ĩt+1 (8)

After the gradient fusion, if there still exists unfilled re-
gions (occluded regions), we adopt Poisson blending to map

the gradient to RGB domain and adopt the DeepFillV1 [10]
to fill the frame with the largest unfilled regions, and prop-
agate such filled regions to the other frames with the com-
pleted flows.

1.4. Detailed adversarial loss for ASFN training

As for the training of ASFN, we adopt reconstruction
loss Lsrec and the GAN loss. We adopt hinge loss to super-
vise the ASFN training. Given the refined gradient∇Ît and
the ground truth gradient∇It, the discriminator loss can be
illustrated below:

LsD = Ex∼P∇It (x)
[ReLU(1 +D(x))]

+ Ez∼P∇Ît
(z)[ReLU(1−D(z))]

(9)

where D is the discriminator, the adversarial loss is:

Lsadv = −Ez∼P∇Ît(z)
[D(z)] (10)

1.5. Acceleration of Poisson blending

FGVC [2] constructs the Poisson equation based on the
whole frame to render the RGB frames from the completed
gradients. The Poisson equation can be written as Ax =
b. A is the coefficient matrix, x is the vector contains the
pixels of each regions to be synthesized, and b is the known
gradients in the boundary. In the implementation of FGVC,
they synthesize all the pixels with Poisson equation. Given
the frame with H ×W resolution and the mask with h×w
size of masked regions, the shape of A in FGVC is hw ×
HW , the shape of x is HW ×1, and the shape of b is hw×
1. Because the corrupted regions mainly occupy a small
area of each frame, it is unnecessary to construct Poisson
equation based on the whole frame.

Different from FGVC, we construct the Poisson equation
based on the corrupted regions and their 2-pixel boundaries.
In this setting, Poisson blending can get access to the gra-
dients and variation in the boundaries, which is enough for
Poisson blending to synthesize the corrupted pixels.

Therefore, the shape of A in our method is hw × (hw +
4(h+w)), the shape of x is (hw + 4(h+w))× 1, and the
shape of b is hw×1. Since hw+4(h+w) is always smaller
than HW , we can accelerate the Poisson blending.

For the masks with multiple connected components, we
search the connected components first, and use our acceler-
ated Poisson blending to synthesize these connected com-
ponents in an iterative manner. The detailed algorithm is
shown in Alg. 1

We test our accelerated Poisson blending on multiple
video sequences, and observe 20% to 30% acceleration.



Algorithm 1 Accelerated Poisson blending

Require:
1: Warped and refined gradients∇Îx and ∇Îy
2: Corrupted frame It and its corresponding mask Mt

Ensure: The inpainted result Ît
3: function MAIN(∇Îx,∇Îy,Mt, It)
4: # Dilate mask by 1 pixels
5: M̂t = Dilate(Mt, 1)
6: cc = searchConnectedComponent(M̂t))
7: for c ∈ cc do
8: c = Dilate(c, 1)
9: Ît(c) = SolvePoisson(It(c),∇Îx(c),∇Îy(c))

10: end for
11: return Ît
12: end function

2. More experimental results
2.1. Flow numbers in IGFC

As for IGFC, we adopt 3 consecutive optical flows F̃t−1
∼ F̃t+1 to restore the target flow F̃t based on the efficiency
and performance tradeoff. We observe a constant perfor-
mance gain when the flow numbers grows from 1 to 5. The
performance drops when the flow number is 7. We argue
that the inertia prior between the target flow and the refer-
ence flow degrades when they are distant. Therefore, the
performance in IGFC drops when the flow number is too
large. Fig. 1 illustrates the variation of PSNR w.r.t. the
number of optical flows on DAVIS dataset [1].

Figure 1. The PSNR value w.r.t. the number of flows, the x-axis
represents the flow number for processing, and the y-axis rep-
resents the corresponding PSNR value. This experiment is con-
ducted on the DAVIS square mask set for parameter selection.

2.2. ASF module numbers in ASFN

We adopt 4 ASF modules in ASFN to strike the balance
between efficiency and performance. The performance sat-

Time FGVC [2] Ours
Flow computation 17.43s 17.43s
Flow completion 116.54s 9.58s
Flow guided gradient propagation 8.23s 7.48s
ASFN gradient refine 0.00s 4.53s
Poisson blending 55.65s 46.15s
Sum on the full sequence 197.85s 85.17s
Average run time of each frame 2.83s 1.22s

Table 3. The runtime analysis on “Paragliding” video sequence
from DAVIS, which contains 70 frames. We adopt the accelerated
Poisson blending to render the inpainted frames. FGVC does not
apply ASFN for gradient refinement, therefore the corresponding
processing time is zero. And the “Flow guided gradient propoaga-
tion” includes the spatial inpainting time cost.

urates when the number of ASF module is larger than 4.
Fig. 2 illustrates the variation of PSNR on DAVIS w.r.t. the
number of ASF modules in ASFN.

Figure 2. The PSNR value with regard to the number of ASF
modules. We illutrate the variation of PSNR w.r.t. number of ASF
modules on the DAVIS square mask set for parameter selection.

2.3. Run time analysis

We analyse different parts of our method on “paraglid-
ing” video sequence from DAVIS. We also analyse the
speed of FGVC [2] on the same sequence. Our worksta-
tion is equipped with four NVIDIA 2080ti GPUs and one
Intel(R) Xeon(R) Gold 5118 CPU. All the video frames are
resized to 432 × 256 for fair comparison. We ignore the IO
time cost which varies across different workstations. The
run time analysis is shown in Tab. 3. Compared with FGVC,
our method mainly accelerates the flow completion and the
Poisson blending procedure. The newly introduced ASFN
does not consume too much computation resource because
of its light-weight network structure.
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Figure 3. Flow completion results when the flow contains fine-
grained structure. Although our flow completion method can
achieve more accurate structure than previous methods, our flow
completion results still suffer the restoration in the regions with
fine-grained details.
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Figure 4. Our limitations in fast motion and large corrupted re-
gions.

3. Detailed Limitation Analysis

Fine-grained flow completion Flow completion is still
an open problem. When the mask occludes the fine-grained
semantic structure of the optical flow, even if our flow com-
pletion can reconstruct partial structure, the fine-grained de-
tails is missing, which is shown in Fig. 3.

Fast motion and large corrupted regions Our method
suffers from inpainting upon videos with fast motion and
large corrupted regions. When the range of motion gets
larger, the performance of our method degrades, as illus-
trated in Fig. 4.

Processing speed The running speed of our method is
comparable to other flow based video inpainting methods.
However, all the flow-based video inpainting methods are
slower than the attention-based methods. The bottleneck of
the speed of our method comes from two aspects, the first
is the flow extraction, and the second is Poisson blending.
Our implementation of Poisson blending is on CPU now,
we will transfer the implementation of Poisson blending to
GPU for much faster running speed in the future work.

4. More visual results
4.1. Our results on 4K sequences.

Compared with attention based video inpainting meth-
ods, our proposed method is quite memory-efficient. With-
out bells and whistles, we can process even 4K video se-
quences with high quality. Our results on 4K sequences are
shown in Fig. 5.

4.2. More flow comparison results.

We provide more visualized flow results to demonstrate
the superior performance of our proposed IGFC in compar-
ison with two previous flow guided video inpainting meth-
ods [2, 9]. The comparison is shown in Fig. 6.

4.3. More qualitative results.

We show more results to compare the subjective perfor-
mance between our method and the others. We provide
video demo in https://youtu.be/dHuFDPDWkYc for video-
wise qualitative comparisons. And we also provide the
frame-wise qualitative comparisons in Fig. 7, 8, 9, and 10,
which correspond to the square mask, object mask, object
removal on DAVIS and square mask on YoutubeVOS, re-
spectively.
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(a) Inputs (b) Results

Figure 5. The object removal results of our proposed method on the videos at 3840 × 2160 resolution. The original 4K video sequences
are collected and annotated by [6].



(a) Input (b) DFGVI [9] (c) FGVC [2] (d) Ours (e) GT

Figure 6. The flow completion results of our method, DFGVI [9] and FGVC [2]. The comparison illustrates the accuracy of our IGFC in
completing optical flows.
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Figure 7. The qualitative results of the SOTA methods on DAVIS square mask set. Best viewed with zoom-in.
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(a) Input (b) CPN [3] (c) OPN [5] (d) STTN [11] (e) TSAM [12] (f) FFM [4] (g) FGVC [2] (h) Ours

Figure 8. The qualitative results of the SOTA methods on DAVIS object mask set. Best viewed with zoom-in.



(a) Input (b) CPN [3] (c) OPN [5] (d) STTN [11] (e) TSAM [12] (f) FFM [4] (g) FGVC [2] (h) Ours

Figure 9. The qualitative results of the SOTA methods on DAVIS for object removal. Best viewed with zoom-in.



(a) Input (b) CPN [3] (c) OPN [5] (d) STTN [11] (e) TSAM [12] (f) FFM [4] (g) FGVC [2] (h) Ours

Figure 10. The qualitative results of the SOTA methods on YoutubeVOS square mask set. Best viewed with zoom-in.


