
[CVPR2022]

Supplementary Material

A. Experimental Setup

A.1. General Setup

Following previous works [2, 3, 6], we evaluate our pro-
posed approach on an ImageNet-compatible dataset com-
posed of 1000 images. Consistent with prior works, we set
the maximum perturbation magnitude to L∞ = 16/255.
The step size α is set to 4/255 and unless specified, we
set the number of iterations T to 20 and 200 for the non-
targeted and targeted attack, respectively.

A.2. Image Transformations

To test the robustness of the generated adversarial ex-
amples to image transformations, we apply brightness, con-
trast, and Gaussian noise transformations. For the bright-
ness and contrast transformations, we increase the bright-
ness and contrast by a factor of 2. For the Gaussian noise
augmentation, we apply Gaussian noise centered around
zero mean, with a standard deviation of 0.1.

B. Additional Results for supporting our pro-
posed RCE loss

Table 1. Results of transfering from CNN (ResNet50) to ViT and
MLP backbones. Each entry represents the ICR/targeted ASR@1
(%).

non-targeted Acc. ICR OLNR NLOR NRT CosSim

CE 100.00 629.11 604.28 74.50 255.81 0.37
CW 100.00 276.59 258.51 5.28 237.44 0.48
LL 100.00 409.08 398.66 963.84 300.79 0.10

FDA 99.00 504.42 498.90 430.81 297.03 0.13

RCE(Ours) 100.00 1000.00 984.15 477.37 346.03 -0.15
RCE(LL) 100.00 567.13 555.13 996.23 342.56 -0.12

Smaller ε in white-box attack. Table 1 reports the
white-box results with an allowed ε=4/255 on ResNet50.
The trend mirrors that with ε set 16/255 in the main
manuscript.

Transfer from CNN to ViT and MLP. The results of
transfering from CNN (ResNet50) to ViT and MLP are re-
ported in Table 2. We observe that our proposed RCE loss
outperforms existing ones by a large margin.

DenseNet121 as the surrogate model. In the main
manuscript, we present the targeted transferability results
with ResNet50 as the source model. Additionally, we
choose DenseNet121 as the source white-box model. The
results are shown in Table 3 for non-targeted attack and in
Table 4 for targeted attack.

Table 2. Results of transfering from CNN (ResNet50) to ViT
and MLP. Each entry represents the ICR/targeted ASR@1 (%).
ResNet50 is trained by l2-PGD atttack with ε set to 0.5.

ViT B16 ViT L16 MLP-M B16 MLP-M L16

I-
FG

SM

CE 187.03/3.0 218.54/7.0 147.16/9.0 211.69/6.0
Po-Trip 140.45/23.0 159.86/21.0 83.11/20.0 139.43/12.0

RCE 48.53/28.0 66.58/25.0 43.98/31.0 71.57/17.0

M
I-

D
I-

T
I CE 42.74/42.0 51.73/41.0 19.00/38.0 96.81/13.0

Po-Trip 41.86/39.0 41.37/37.0 44.77/37.0 98.00/18.0
RCE 23.35/49.0 32.67/54.0 10.90/44.0 46.62/28.0

C. Top-k Attack Strength is Transferable
Transferability and Strength As was discussed in the

main manuscript, source ASR@1 (source ICR) and target
ASR@1 (target ICR) both increase over iterations. Now,
we show this relationship more explicitly in Figure 1.

Figure 1. Left: Source ASR@1 and Target ASR@1 (average of
several target networks) over iterations. Right: Source ICR and
Target ICR (average of several target networks) over iterations.

Single Sample Analysis. Figure 2 shows the results of
ICR in untargeted and targeted settings over T iterations
for both white-box and black-box models for a (randomly
chosen) single sample. The results show that top-k attack
strength based on the metric of ICR is transferable on a sin-
gle sample (see the similar trend of ICR with more iterations
on the white-box and black-box models).

D. Zero Sum Constraint
D.1. Phenomenon

As introduced in the main manuscript, the zero-sum phe-
nomenon of logit vector Z shows that the sum of the log-
its mostly results in a value close to zero for both clean
and adversarial samples. Here, we empirically demonstrate
the phenomenon of the “zero sum” constraint by evaluating
the sum of the logit value Z on the ImageNet-compatible
dataset introduced in the NeurIPS 2017 (See the Experi-
mental general setup) and CIFAR10/CIFAR100 for differ-



Table 3. Non-targeted transferability of I-FGSM (top), and MI-DI-TI-FGSM (bottom) attacks for source network DenseNet121. Each
entry represents the ICR/non-targeted success rate (%).

RN50 DN121 VGG16bn RN152 MNv2 IncV3

CW 27.49/86.10 636.75/100.00 22.98/80.20 16.96/73.90 26.88/76.40 8.36/42.30
CE 68.10/86.70 851.94/100.00 58.14/84.90 39.74/75.30 51.90/79.20 14.22/45.70

RCE (Ours) 128.89/85.30 1000.00/100.00 100.56/83.50 72.46/75.10 85.67/82.90 19.32/44.10
CW 70.29/96.90 632.11/100.00 58.03/96.40 46.42/92.30 80.04/92.90 39.95/76.90
CE 206.55/98.50 883.52/100.00 192.35/97.80 138.87/95.50 168.07/96.70 99.17/84.30

RCE (Ours) 378.31/98.50 1000.00/100.00 337.00/98.10 254.97/95.20 288.82/97.50 144.69/82.80

Table 4. Targeted transferability of I-FGSM (Top), and MI-DI-TI-FGSM (bottom) attacks for source network DenseNet121. Each entry
represents the ICR/targeted success rate (%).

RN50 DN121 VGG16bn RN152 MNv2 IncV3

CW 195.81/4.60 1.11/99.90 219.33/2.60 265.05/1.20 277.73/0.70 533.24/0.10
CE 295.22/0.90 1.12/97.50 322.68/0.60 341.30/0.60 347.49/0.30 586.48/0.00

RCE (Ours) 154.12/5.20 1.01/98.70 175.77/4.00 226.36/1.70 254.80/0.80 510.23/0.30
Po-Trip 245.60/2.30 1.00/100.00 282.81/1.20 304.62/0.60 319.42/0.50 562.21/0.00

CW 39.09/38.30 1.00/100.00 54.32/27.10 69.03/23.70 103.37/11.50 205.07/6.90
CE 79.21/15.70 1.00/100.00 107.42/10.90 118.32/7.80 163.35/4.50 280.00/2.70

Po-Trip 84.02/17.80 1.00/100.00 128.97/10.30 124.94/8.90 172.83/4.90 291.45/3.30
RCE (Ours) 16.95/45.50 1.01/98.80 22.67/39.80 41.85/29.50 71.47/14.30 165.36/8.90

Figure 2. Untargeted (left two) and targeted (right two) ICR over T iterations in both white-box (ResNet50) and black-box scenarios on a
(randomly chosen) single sample.

Table 5. Zero sum experiment results on the ImageNet dataset
with various network architectures. The metrics reported are the
average (with standard deviation) over the validation samples.

Sum Abs. Sum Std Min Max

RN50 0.01±0.00 1830.44±284.83 2.45±0.36 -5.80±0.93 16.87±4.70
DN121 0.02±0.00 1876.99±291.23 2.50±0.36 -6.23±1.01 15.96±4.14

VGG16bn 0.01±0.00 2324.19±410.37 3.09±0.56 -6.76±1.26 19.12±6.55
RN152 0.00±0.00 1825.42±302.96 2.45±0.38 -5.84±0.97 17.67±4.58
MNv2 0.08±0.06 2304.12±298.43 3.03±0.40 -8.12±1.28 17.22±4.90

ent network architectures. From the results in Table 5 and
Table 6, the first observation is that the sum of all logit
values in Z, i.e.

∑i=K
i=1 zi is indeed close to zero with a

very small variance among the validation samples, indicat-
ing

∑i=K
i=1 zi is very close to zero for all validation sam-

ples. To further demonstrate that this phenomenon is oc-
curring, not just due to very small values in Z, we further

Table 6. Zero sum experiment results on the CIFAR10 (top) and
CIFAR100 (bottom) datasets with various network architectures.
The metrics reported are the average (with standard deviation) over
the validation samples.

Sum Abs. Sum Std Min Max

RN20 0.02±0.02 56.21±12.76 7.73±1.90 -8.29±2.01 19.15±6.48
RN32 0.02±0.01 45.75±8.84 6.48±1.27 -6.46±1.57 16.60±4.60
RN44 0.05±0.02 46.41±9.12 6.59±1.39 -6.45±1.44 16.99±4.95
RN56 0.03±0.02 39.99±7.88 5.78±1.10 -5.49±1.43 15.15±3.86

VGG19bn 0.00±0.00 22.55±2.45 3.49±0.38 -3.67±1.00 9.42±1.38
DenseNet-BC-190-40 0.01±0.00 27.82±4.04 4.28±0.49 -3.54±0.87 11.89±1.79

RN20 0.32±0.15 483.70±98.10 6.21±1.29 -13.60±2.97 20.33±6.77
RN32 0.20±0.13 511.02±93.67 6.58±1.24 -14.07±2.87 22.71±7.19
RN44 0.20±0.14 498.21±87.48 6.45±1.17 -13.81±2.78 22.95±7.24
RN56 0.29±0.17 474.85±79.69 6.15±1.08 -13.00±2.60 22.39±6.95

VGG19bn 0.00±0.00 223.78±22.21 2.89±0.27 -4.34±0.51 12.70±2.12
DenseNet-BC-190-40 0.03±0.00 189.25±32.73 2.74±0.49 -4.69±0.96 15.02±5.01

present the absolute sum, i.e.
∑i=K

i=1 |zi|. Additionally, the
relatively large values for the standard deviation, the mini-



Table 7. Zero sum experiment results for the adversarial images
crafted with different losses: CW (top), CE (middle), RCE (bot-
tom) on ImageNet dataset with ResNet50 (white-box model) and
DenseNet121.

Sum Abs. Sum Std Min Max

RN50 0.01±0.00 1917.60±232.74 2.49±0.32 -6.30±0.87 14.61±4.55
DN121 0.02±0.00 2224.91±371.48 2.95±0.52 -7.33±1.31 21.04±6.42

RN50 0.01±0.00 2001.94±251.94 2.63±0.36 -6.49±0.93 16.91±5.61
DN121 0.02±0.00 2373.04±419.24 3.19±0.61 -7.70±1.51 24.05±7.69

RN50 0.01±0.00 1720.35±178.80 2.20±0.23 -5.92±0.78 10.29±2.26
DN121 0.02±0.00 1869.99±262.75 2.38±0.35 -7.78±1.97 9.52±2.40

Table 8. Zero sum experiment results on the CIFAR10 dataset with
various network architectures. The metrics reported are the aver-
age (with standard deviation) over the validation samples. Weights
of the network were initialized with ∼ N (0, 12).

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.00±0.00 29.93±4.99 4.38±0.70 -3.79±0.78 11.75±2.62 93.59%
VGG19bn 0.00±0.00 19.12±1.57 3.05±0.22 -2.24±0.37 8.71±1.06 93.38%

mum, and maximum value for the Z statistics demonstrate
that there exists a balance between the negative and pos-
itive logit values, which results in their sum being zero.
This phenomenon is also observed for adversarial samples.
We report the results for adversarial examples with different
losses (CW, CE, RCE) on ImageNet dataset with ResNet50
transferring to DenseNet121 in Table 7. The results show
that the zero-sum constraint also holds for adversarial ex-
amples.

D.2. Influence of Network Weights Initialization

We investigate the influence of the network weight ini-
tialization on the zero sum phenomenon. We observe
that zero sum constraint is still present even with different
weight initialization parameters suggesting that there is no
influence of the network weight initialization on the phe-
nomenon. The results are reported in Table 8, Table 9, Ta-
ble 10, Table 11, and Table 12.

Table 9. Zero sum experiment results on the CIFAR10 dataset with
various network architectures. The metrics reported are the aver-
age (with standard deviation) over the validation samples. Weights
of the network were initialized with ∼ N (1, 12).

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.00±0.00 32.13±5.81 4.59±0.78 -4.24±0.92 12.01±2.81 92.48%
VGG19bn 0.00±0.00 22.86±2.73 3.44±0.40 -3.63±0.55 9.19±1.41 93.04%

D.3. Influence of Unbalanced Dataset

Additionally, we confirm that the zero sum constraint
is valid when the dataset classes are unbalanced. For 10
classes in CIFAR10, we test two variants of unbalance. In
the first setup, we set the number of samples for each class

Table 10. Zero sum experiment results on the CIFAR10 dataset
with various network architectures. The metrics reported are the
average (with standard deviation) over the validation samples.
Weights of the network were initialized with ∼ N (3, 32).

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.00±0.00 39.15±8.08 5.44±1.21 -6.86±2.69 13.09±3.76 91.77%
VGG19bn 0.00±0.00 25.40±3.94 3.87±0.54 -6.35±2.01 9.20±1.28 92.70%

Table 11. Zero sum experiment results on the CIFAR10 dataset
with various network architectures. The metrics reported are the
average (with standard deviation) over the validation samples.
Weights of the network were initialized with ∼ N (5, 52).

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.00±0.00 31.46±6.77 4.30±0.93 -4.50±1.09 10.58±3.20 90.20%
VGG19bn 0.00±0.00 20.87±2.44 3.24±0.35 -3.28±0.55 8.81±1.28 92.62%

Table 12. Zero sum experiment results on the CIFAR100 dataset
with various network architectures. The metrics reported are the
average (with standard deviation) over the validation samples.
Weights of the network were initialized with ∼ N (5, 52).

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.01±0.00 377.77±75.17 4.79±0.96 -10.98±2.36 14.10±4.35 63.83%
VGG19bn 0.00±0.00 558.74±83.81 6.78±0.98 -15.31±2.52 17.14±2.80 68.32%

Table 13. Zero sum experiment results on the unbalanced CI-
FAR10 dataset (linear change) with various network architectures.
The metrics reported are the average (with standard deviation) over
the validation samples.

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.00±0.00 25.70±4.81 3.82±0.73 -2.99±0.73 10.41±2.60 91.22%
VGG19bn 0.00±0.00 20.55±2.31 3.24±0.37 -3.60±0.73 8.70±1.35 89.89%

to change linearly (from 5000 to 500). The result is in Ta-
ble 13. In the second setup, we adopt the unbalanced class
setting as the common long-tail problem setup [1] with the
imbalance factor set to 50 or 100. The results for this setup
are in Table 14 and Table 15. The result for CIFAR100
dataset with imbalance factor of 50 is in Table 16.

Table 14. Zero sum experiment results on the unbalanced CI-
FAR10 dataset (imbalance factor 50) with various network archi-
tectures. The metrics reported are the average (with standard de-
viation) over the validation samples.

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.00±0.00 26.37±5.27 3.77±0.92 -3.21±0.80 9.84±3.32 77.70%
VGG19bn 0.00±0.00 23.38±5.01 3.39±0.59 -3.38±1.07 8.79±1.85 78.69%

D.4. Possible Explanation

Admittedly, we do not have a clear explanation for this
phenomenon. Here, we only attempt to provide a possible
explanation. Note that the DNN is often trained with the
CE loss. Taking a closer look at the derivation of the CE



Table 15. Zero sum experiment results on the unbalanced CI-
FAR10 dataset (imbalance factor 100) with various network ar-
chitectures. The metrics reported are the average (with standard
deviation) over the validation samples.

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.01±0.01 25.92±4.79 3.68±0.84 -3.10±0.73 9.57±3.12 70.61%
VGG19bn 0.00±0.00 23.70±5.30 3.44±0.69 -3.85±1.53 8.63±2.04 70.59%

Table 16. Zero sum experiment results on the unbalanced CI-
FAR100 dataset (imbalance factor 50) with various network ar-
chitectures. The metrics reported are the average (with standard
deviation) over the validation samples.

Network Sum Abs. Sum Std Min Max Accuracy

RN56 0.07±0.04 246.12±49.72 3.21±0.65 -6.49±1.48 11.88±3.92 44.46%
VGG19bn 0.01±0.01 225.33±32.34 2.93±0.39 -4.26±0.64 12.08±2.40 45.40%

Figure 3. Influence of w on the
∑i=K

i=1 zi in the training stage.

loss with respect to the logit vector, i.e. ∂LCE

∂Z = P−Ygt,
it can be observed that sum of all values in both P and
Ygt is 1. We believe that this constitutes a necessary con-
dition for making the

∑i=K
i=1 zi close to zero. To verify

this claim, we experiment with a new loss that results in
∂L
∂Z = wP −Ygt. When w is set to a value larger than 1,
such as 1.1, the loss makes the

∑i=K
i=1 zi smaller and smaller

as the network training goes on (See Figure 3). Similarly,
when w is set to a value smaller than 1, such as 0.9, the loss
tends to increase the

∑i=K
i=1 zi. In the above two cases, we

observe that
∑i=K

i=1 zi eventually becomes infinitely nega-
tive/positive given enough iterations and consequently the
network training does not converge. When w is set to 1,
which is identical to the original CE loss, we observe that∑i=K

i=1 zi converges to zero. Overall, we find that the sum
of all values in ∂LCE

∂Z is a necessary, but probably not suf-
ficient, condition for making

∑i=K
i=1 zi approach zero. We

leave a more elaborate explanation for this phenomenon to
future work.

E. Logit Vector Gradient Derivations
Here, we provide a detailed derivation of the partial

derivative of various loss functions with respect to the logit
vector Z, shown in the main manuscript.

E.1. CE Loss

Before demonstrating the derivative for the CE loss, we
will first calculate the derivatives of the softmax output (P)
with respect to its input (the logit vector Z). Each entry
of the logit vector Z is indicated with index i, while each
entry of the P is indicated with index j. For simplicity, we
divide into two scenarios, j = i and j 6= i, and conduct the
derivation respectively. First, let’s consider i.e. j = i, and
the derivative ∂pj

∂zi
can be calculated as follows:

∂pi
∂zi

=
∂( ezi∑K

k=1 ezk
)

∂zi

=
ezi

∑K
k=1 e

zk − e2zi

(
∑K

k=1 e
zk)2

= pi − p2i
= pi(1− pi),

(1)

with pi = ezi∑K
k=1 ezk

. Eq. 1 enables us to obtain the deriva-
tive of the CE loss, i.e. LCE = − log pgt, with respect
to the softmax input which has the ground-truth index, i.e.
i = j = gt:

∂LCE

∂zgt
=
∂(− log pgt)

∂zgt

= − 1

pgt

∂pgt
∂zgt

= − 1

pgt
(pgt(1− pgt)

= pgt − 1.

(2)

On the other hand, for the case when j 6= i, the derivative
∂pj

∂zi
can be calculated as follows:

∂pj
∂zi

=
∂( ezj∑K

k=1 ezk
)

∂zi

= − ezjezi

(
∑K

k=1 e
zk)2

= −pjpi.

(3)

With Eq. (3), we further calculate the derivative of the CE
loss with respect to the softmax inputs which are different
from the ground-truth index, i.e. i 6= gt:

∂LCE

∂zi
=
∂(− log pgt)

∂zi

= − 1

pgt

∂pgt
∂zi

= − 1

pgt
(−pgtpi)

= pi.

(4)



From Eq. 2 and Eq. 4, we arrive at the formulation pre-
sented in the main manuscript:

∂LCE

∂Z
= P−Ygt, (5)

with Yi indicating a one-hot encoded vector with the posi-
tion at index i being one. Thus, the derivative of the CE(LL)
loss, i.e. LCE = logPLL, to the logit vector can be derived
similarly with the final formulation as:

∂LCE(LL)

∂Z
= YLL −P. (6)

E.2. CW Loss

CE and CW loss are the two most widely used losses for
the white-box attack [4, 5]. In the above, we derive the gra-
dient for CE loss and we further conduct a similar derivation
for CW loss which is denoted as LCW = zj − zgt [4, 5]
with j = argmax

i 6=gt
zi indicating the highest class except for

the gt class. The derivative of the LCW to the Z is denoted
as ∂LCW

∂Z . ∂LCW

∂zi
= 0 when i 6= j and i 6= gt. ∂LCW

∂zi
is 1

and −1 when i = j and i = gt, respectively. Therefore, we
arrive at:

∂LCW

∂Z
= Yj −Ygt. (7)

E.3. Relative Cross-Entropy (RCE) Loss

With Eq. 5, we can calculate the derivative of the pro-
posed RCE loss:

∂LRCE

∂Z
=
∂(LCEgt

− 1
K

∑K
k=1 LCEk

)

∂Z

=
∂LCEgt

∂Z
− 1

K

K∑
k=1

∂LCEk

∂Z

= P−Ygt −
1

K

K∑
k=1

(P−Yk)

=
1

K
1−Ygt.

(8)

where 1 indicates a vector with all values being 1.

F. CW and RCE are Special Cases of CE
F.1. Derivative of the Temperature Scaled CE-loss

The derivative of the CE-Loss with temperature scaling
can be written as:

∂LCE(Temp)

∂Z
=

1

Te
(Pe −Ygt), (9)

This derivation unfolds similarly to the one previously pre-
sented for the CE Loss without temperature. Each entry of

the logit vector Z is indicated with index i, while each entry
of P is indicated with index j. Again first looking at the
softmax output with Te (Pe) with respect to the logit vector
Z with i = j we arrive at:

∂pie
∂zi

=
∂( ezi/Te∑K

k=1 ezk/Te
)

∂zi

=
1

Te
(pie(1− pie)).

(10)

For the case where i 6= j we arrive at the following deriva-
tive:

∂pje
∂zi

=
∂( ezj/Te∑K

k=1 ezk
)

∂zi

=
1

Te
(−pjepie).

(11)

Analogous to Eq. (2) and Eq. (4), we can calculate the
derivatives for the CE Loss with Te. For the case i = gt
we arrive at:

∂LCE(Temp)

∂zgt
=
∂(− log pgte )

∂zgt

=
1

Te
(pgte − 1).

(12)

For the case i 6= gt we arrive at:

∂LCE(Temp)

∂zi
=
∂(− log pgte )

∂zi

=
1

Te
pie,

(13)

With Eq. (12) and Eq. (13), we finally arrive at Eq. (9).

F.2. Scale-invariant Property of the Gradient
Derivative

As highlighted in the main manuscript, only the direction
of the derivative matters and the scale is irrelevant because
FGSM is adopted as the basic method for all approaches to
get the sign of the derivative. Without losing generality, we
compare two losses LA and LB by setting ∂LB

∂Z = s∂LA

∂Z
where s is a scale factor. We can derive:

sign(
∂LB

∂X
) = sign(

∂Z

∂X

∂LB

∂Z
)

= sign(s
∂Z

∂X

∂LA

∂Z
)

= sign(
∂Z

∂X

∂LA

∂Z
)

= sign(
∂LA

∂X
)

(14)



F.3. Relationship to Other Loss Functions

The probability of the i-th class in Pe is shown as:

pie =
ezi/Te∑k=K

k=1 ezk/Te

(15)

Note that Te ranges from (0,∞). Without losing generality,
by assuming zx > zy , we can derive:

pxe
pye

=

ezx/Te∑k=K
k=1 ezk/Te

ezy/Te∑k=K
k=1 ezk/Te

=
ezx/Te

ezy/Te

= e(zx−zy)/Te

> 1

(16)

RCE Loss can be seen as a Special Case of CE Loss. For
zx > zy and Te →∞, we can derive:

lim
Te→∞

pxe
pye

= lim
Te→∞

e(zx−zy)/Te

= 1

(17)

With the above equation and
∑k=K

k=1 pie = 1, it can be con-
cluded that Pe = 1

K1 when Te → ∞ or when Te is set
to a large value. Thus, in this case, Eq. (9) can be further
derived as follows:

∂LCE(Temp)

∂Z
=

1

Te
(Pe −Ygt)

=
1

Te
(
1

K
1−Ygt)

(18)

Given the scale-invariant property indicated by Eq. (14),
Eq. (18) is equivalent to the derived gradient in Eq. (8) for
the RCE loss. Thus, we conclude that the RCE loss can be
seen as a special case of the CE loss by setting Te to a large
value.

CW loss can be seen as a Special Case of CE Loss.
We will now show the behavior of Pi

e when Te → 0. Given
zx > zy , we can derive:

lim
Te→0

P x
e

P y
e

= lim
Te→0

e(zx−zy)/Te

=∞
(19)

If imax is the index of the class with the largest logit,
limTe→0 p

imax
e = 1. Otherwise, limTe→0 p

i
e = 0 (i 6=

imax). Given the definition j = argmax
i6=gt

zi, we know

that the class with the highest logit in Z is either the j-th
class or the gt class. Thus, for small enough Te (Te → 0),

pgte + pje = 1. Let us denote pj = m and pgt = 1 − m.
Then, Eq. 9 can be rewritten as

∂LCE(Temp)

∂Z
=
m

Te
(Yj −Ygt), (20)

Given the scale-invariant property indicated by Eq. 14,
Eq. 20 is equivalent to the derived gradient in Eq. 7 for the
CW loss. Thus, we conclude that the CW loss can be seen
as a special case of the CE loss by setting Te to a very small
value.

Figure 4. Non-targeted attack success rate and ICR on the white-
box ResNet50.

Figure 5. Non-targeted attack success rate and ICR on the black-
box DenseNet121.

G. Limitation of RCE Loss in the Early Itera-
tions

As indicated in the main manuscript, the proposed RCE
loss might converge slower than the existing CE loss due to
its position-agnostic property. Transferring from ResNet50
to DenseNet121 on the ImageNet, we provide the white-
box results and black-box results in Figure 4 and Figure 5,
respectively. We observe that in the early iterations, CE out-
performs our proposed RCE loss, especially for the metric
of attack success rate.
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