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This supplementary material provides (section 1) proofs
of the theoretical results presented in the main paper, some
observations of the implications of the expressions for uni-
form Hamming weighted influences (section 2), algorith-
mic details of a scheme for employing Bernoulli weighted
influences to approximately solve MaxCon (section 3), and
some further experimental results (sections 4, 5 6).

1. Proofs of theoretical results

Theorem 2.1. If f : {0,1}" — {0,1} is a monotone
Bool tion, then Inf![f] = ———— fa({i}).
oolean function, then Inf]|[f] mf ({i})

Proof. The i-th derivative operator D; maps a Boolean
function f to a function D; f defined by [1]

Dif(b) := f(b"") — F(b"°), (1

where b"*?% = (by,--- ,b;_1,a,b;11, - ,b,). Since f :
{0,1}™ — {0, 1} is Boolean-valued, we have
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Inf!(f] = (Dif, Dif)q. 3)
By definition,
Dix(b) = {&m%\{i}(b)’ 1: Z z
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SCln
= %1 > fUS)xe
SzES S\
If f is monotone,
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Inf![f] = (D;f,x3) = ———=F1({i}).
aff1f] = (Difoxf) = =103}
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Theorem 3.1 (Ideal Single Structure). If ng = 1, namely,
f is ideal with respect to a single maximum upper zero b*1,

then, fori € S;kl (inliers),
IEdLf] = (G5t = Ol (1 — ),
and fori € S,?kl (outliers),
k1
mff[f]=Cy P (1—q)" 7'+ > -,
l=p+1
which implies Inf{ [f] — Inf] [f] = C};lflq”(l _

g P! 4 Zl S C’lqul(l —q)" 71 > 0, where i, €

Sbk“l’ 19 € Sbkl

Proof. For any i € Sbkl, itb € Lgp_q or I’.>P+2’ then
f(b) = f(b%"); if b € Ly, then f(b) # f(b®") holds for
(C;}fl - C;;l*l)-possible vertices b; if b € Ly1, then
f(b) # f(%) holds also for (Cp—! — Ck~1)-possible

vertices b. Therefore, we have

Inf{[f] = (C} " = Cp " NgP(1— )P
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Forany i € Sy, ,ifb € Lgp_1 or Lxj o, then f(b) =
f%); if b € Ly, then f(b) # f(b®) holds for C'~!-
possible vertices b; if b € L, 1, then f(b) # f(b¥%) holds
for (Cp~' + C;fjrl) -possible vertices b; if b € L; (p + 2 <
I < ki), then f(b) # f(b%) holds for (C*, + CF")-
possible vertices b; if b € Ly, 11, then f(b) # f(b®") holds
for Cfll -possible vertices b. Therefore, we have

Inff[f] _ Cn71 p( _ q)'nfp + (Cn71 Ckl l)qp+1 >
(1 7 q n p—1 + Z + Ckl (1 . q)nfl
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Theorem 3.2 (Ideal Multi-Structure). Suppose ng > 1, i.e.,
[ is ideal with several upper zeros, then, ¥ i € M;"° Slﬁc (if
non-empty),

Wfflf] = (G371 = > G N (=)
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Proof. We prove this theorem by induction on ng. By The-
orem 3.1, (4) is true for ng = 1. Suppose (4) holds for

no — 1, namely, Vi € N7 15;2 ,

Inf![f] = Cp~'q"(1— )" "
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Now we only have to prove that, Vi € N S;; ,

In?[f] = In?[f]

.\ {_Ckno—lq:(l _ q)nfpfl’ ino _ ]_7
Zl p+1 " l(l - Q)n_l_lv Z.no = 0.

When adding one more upper zero b*mo, for any i €
ﬂ;;ol—lszﬁw N S;kno, i-boundary edges will decrease by
C’;"“il at level p and p + 1. That s, if b € L, or L1,
then f(b) = f(b®) holds for C’,’;”O_l possible vertices b.
Then, the decrease amount for Infg [f]is
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Forany i € N0, 18“ N Sbk”() 1-boundary edges will in-
crease. In details, if b e Lk, +1, then f(b) # f(b%’) holds
for C:”(‘: = 1 possible vertex b, ifb € L; (p+2 < 1 < ky,),
then f(b) # f(b¥") holds for (C’lk”‘) + C’lkf )-possible ver-

tices b, if b € Ly, the possible vertices b have Cpi"l
Then, the increase amount for Inf? [f] is
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which complete this proof. O

Theorem 3.3. If f is non-ideal, then the weighted influence
fa(S*) is given by
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where f4(S®) doesn’t exist if S® = ().

To better understand Theorem 3.3, let us consider the
simplest non-ideal case where ng = 2 and mg = 1.

Theorem 3.4. The existing influences are represented as
FUsM0y = (C;—1 ol kel 0;31—1) x
¢"(1—q)" "7,
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Proof. By Theorem 3.2, we only have to prove

fa(se)y = fi(st))
CprlgP(1—q)" 7P,
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Vi € S(**0) the verticesb € L, or L, for f(b) # f(b%)
have increased C)! ~! because of the ovelap sub-cube By, ,
then
FUSED) =f1(Se) + C M (1 = 0)""
+ C;q—lqp—‘rl(l _ q)n—p—l
_f [ a;—1 n—p—1
=fUSE) + O (1 — )P
Vi SV ifb € Ly, 41, then i-boundary edges de-
crease by CL, ifb € L (p+2 <1< ay), then i-boundary

edges decrease by C}"* + C}",, if b € L, 1, the decrease
amount is C} . Therefore,
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which complete the proof. O

By Theorem 3.2 and Theorem 3.4, Theorem 3.3 can be
proved by induction on my.

2. Uniform Hamming measure Influence

Consider the ideal single structure case define in Theo-
rem 3.1. Firstly, it is easy to see the for the ideal single
structure, any algorithm that starts with a feasible set of size
large than the combinatorial dimension, and then greedily
adds points if the larger set remains feasible, will obtain the
MaxCon solution. So it is an easy problem with obvious so-
lution strategies. But if we did decide to use influences we
can note that from equation (3.1) the inlier influences came
from counting feasible/infeasible transitions between levels
p and p + 1 only. Thus for sampling uniform Hamming
level above level p + 1, there are no feasibility/infeasibility
transitions caused by inliers. In other words, the Uniform
Hamming influence measure, at that level or above, will be
exactly zero for inliers. Since the influences of outliers, for
the same measure will be non-zero, this seems to promise
a remarkably efficient sampling strategy - one could elimi-
nate outliers at the first sample that revealed a count for the

associated influence - without the need to continue with the
full estimation process. Of course, practically, this is too
good to hold for real data - it is very brittle to our strict as-
sumptions here. Nonetheless, it does hint at the usefulness
of a less brittle strategy of early termination of the counting
process once a count reaches some degree of statistically
significantly higher than the rest, rather than a set number
of samples always being used: a future research topic.

Now consider the ideal multiple structure setting. From
equation (4), the influence accrued by being inlier to some
structure (first term) is only accrued between level p and
p + 1. The subtraction is due to feasibility transitions “that
didn’t occur” because the subset with added inlier remains
within the same structure). So once again, sampling above
level p will not “see” those counts. But since inliers to one
structure are outliers to another (we assumed no significant
overlap): hence the influence of inliers to any structure will
not be zero - different to the single structure case, as all
structures are outliers to (all) other structures and thus ac-
crue influence from the second term in the equation. It is
also easy to see that so long as the level is “not too high”
(above the largest structure) the Hamming sampled influ-
ences will be an appropriate guide (influence of inliers of a
larger structure will be smaller). (In that second term the
largest structure is excluded from the sum over is = 0,
when calculating influence for that structure.)

In more detail, since a point is a member of at most one
structure (we forbid overlaps in the definition of “ideal”),
we observe that an inlier to any structure is associated with
only one term in the subtraction and

Analysis of the non-ideal case is complicated (hugely)
by the complex combinatorics of possible overlaps.
Nonetheless, for structures with little overlap with any other
(we would argue the majority of structures in situations of
interest) the “perurbation” from the ideal case calculations
will be minimal. For situations with very large overlap in
structures, one could alternatively view these as minor vari-
ants of one and the same structure (simply including a few
extra points and losing one or two) and thus - with respect
to the overlaps involving the largest structure, these could
be considered as minor sub-optimal variants and essentially
recovering one of the slightly smaller variants, compared
with the actual optimal, is something of likely minor prac-
tical consequence. Of course, we realise that such observa-
tions are far short of conclusive argument and we make no
claims of otherwise.

3. Algorithms based on Bernoulli weighted in-
fluences

Algorithm 1 is essentially similar to that presented in [2],
where p+1 is the combinatorial dimension of the prescribed



model, the function f is evaluated as

F@) = ﬂ(ngngg%r(xi,a) <eg) (6)

with I(-) the indicator function. The key difference is how
we evaluate the estimated weighted influences Inff [f]-

Algorithm 1: Consensus maximisation using
weighted influences (WI)

Input: Dataset X = {x;}}" , probability ¢ € (0,1),
sample size h, threshold € > 0.
Output: Inliers set Z*
1 Initialization: Z < 17y,
2 while |Z| > p do
3 Solve the minmax problem

mjn pagr(e0)

to get a basis B.
4 Evaluate the estimated weighted influences

I;/f?[f] fori € Bby

.4
| mEl= hme g (b))
6 I(—I\argmaxi{fnvf?[f] | i € B}
7 if f(Z) = 0 then
8 F + T.
9 Break.
10 end if
11 Conduct Algorithm 2 for local expansion to add

possible missing inliers.
12 end while
13 return Z*

Algorithm 2: Local expansion step

Input: Dataset X = {z;}?_,, threshold € > 0,
initial solution Z.

Output: Inliers set 7

1 Candidates + X'\ Z.

2 for i in Candidates do

3 | T+ Tud{i}.

4 if f(Z) =1 then

5 ‘ T+ T\ {i}.

6 end if

7 end for

8 return 7
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Figure 1. Comparison results of 8 dimensional linear regression
with synthetic data: (Top) consensus size and (Bottom) runtime.
All experiments were repeated 50 times.

4. Comparison of the effect of local expansion
in MBF and WI

In this section, we will compare the effect of local expan-
sion in MBF and WI using the example of 8-dimensional
linear regression. The experiment setting is the same as
Subsection 4.1 in the main paper. We denote MBF and
WI without local expansion by MBF-nL and WI-nL, respec-
tively.

From Figure 1, we find that the number of inliers re-
turned by the proposed method without local expansion WI-
nL is less than that of MBF-nL, however, with the help of
local expansion, both WI and MBF can find the same num-
ber of inliers. More importantly, our method WI (WI-nL)
is generally faster than MBF (MBF-nL), especially in the
presence of higher number of outliers.

5. Further results on linearised fundamental
matrix estimation

This section further examines the performance of our
proposed method on linearised fundamental matrix estima-
tion on the KITTI dataset that is used in the main paper.
In this experiment, we choose the confidence p = 0.99
for the standard stopping criteria in both RANSAC and Lo-
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Figure 2. Distributions of consensus size (left column) and run
time (right column) of linearised fundamental matrix estimation
on KITTI image pairs 417 — 420 (top row) and 579 — 582 (bottom
TowW).

RANSAC. The average consensus size and runtime includ-
ing their variance over 20 repeated runs are shown in Table
1.

From Table 1, we can find that: (1) With respect to the
standard stopping criteria, RANSAC-p and Lo-RANSAC-p
are much faster than the proposed method, however, they
sacrifice the consensus size a lot, especially on the image
pair 738-742; (2) With the help of local expansion, both
MBF and WI improve the returned consensus size from
MBF-nL and WI-nL with a small amount of extra time bud-
get. Moreover, without local expansion, WI-nL is slightly
better than MBF-nL in terms of returned consensus size and
runtime, on average.

To further compare the performance of Lo-RANSAC,
MBF/MBF-nL and WI/WI-nL, we plot the distributions of
consensus size and runtime on the image pair 417 — 420 and
579—582 in Figure 2. From which, we can see that although
WI and MBF can get similar average consensus size, WI
has a higher probability to achieve better results with less
time budget. Obviously, the more iterations of RANSAC
and Lo-RANSAC use, the higher consensus size they re-
turn. However, our method as well as MBF can increase
results by sampling more vertices in the Boolean cube to
get more accurate (weighted) influences.

A fair and safe conclusion is that on some datasets,
WI and MBF (including their variants) perform better than
RANSAC and Lo-RANSAC with some prescribed time
(generally longer than the rule of thumb prescriptions for
termination of those algorithms: thus when one is prepared
to spend extra computation for better results, WI and MBF
may be alternatives worth considering). More importantly,
W1 is able to achieve similar consensus size with less time
budget, which means W1 is an effective alternative of MBF.
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Figure 3. Distributions of consensus size returned by MBF and
WL

6. Further results on linearised homography
estimation

In this section, we compare the distributions of consen-
sus size returned by MBF and WI, which is shown in Figure
3. It can be seen that WI can achieve better results with high
probability.
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Table 1. Results for linearised fundamental matrix estimation. RANSAC-p and Lo-RANSAC-p refer to RANSAC and Lo-RANSAC with
standard stopping criteria of the confidence p = 0.99, respectively. MBF-nL and WI-nL refer to implementing MBF and WI without local
expansion steps, respectively. All experiments were repeated over 20 random runs.

104-108 198-201 417-420 579-582 738-742

RANSAC-p Consensus ~ 252.05 276.00 341.20 474.20 411.60
(238266)  (267,282)  (317,351)  (453,496)  (401,425)
Time (s)  0.01 0.01 0.01 0.01 0.01
(0.01,001)  (0.01,001)  (0.01,0.01)  (0.01,0.01)  (0.01,0.01)
Lo-RANSAC-p  Consensus  264.15 281.75 354.05 492.25 423.15
(255,269)  (279,285)  (352,356)  (480,500)  (413,435)
Time (s)  0.04 0.04 0.08 0.14 0.13
(0.01,007)  (0.01,007)  (0.03,0.13)  (0.08,027)  (0.05,0.26)
MBF-nL Consensus ~ 261.80 285.60 352.75 503.75 441.40
(253,268)  (281,288)  (348356)  (499,509)  (434,445)
Time (s)  3.03 1.84 2.41 3.57 3.25
(2.56,3.55)  (1.652.29)  (2.132.82)  (2.93,435)  (2.82,4.10)
WI-nL Consensus ~ 269.50 287.40 357.40 504.75 441.90
(266,272)  (282,289)  (352,359)  (501,508)  (439,444)
Time (s)  2.53 1.67 2.07 3.40 3.02

(2272.90)  (1.562.04)  (1.782.69)  (2.98,4.05)  (2.79,3.41)




