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A. Implementation Details
Algorithm 1 shows our proposed MixSTE. We imple-

ment the proposed approach with Pytorch, and the model
could support inference on a single NVIDIA GTX 2080Ti
GPU. Each epoch takes about 22 minutes, and we train for
about 160 epochs. The input 2D predicted keypoints of
Human3.6M are estimated by the Cascaded Pyramid Net-
work (CPN) [1] or HRNet [7]. The CPN detection result
released by [5] is employed in experiments, and the HR-
Net detection result is acquired from fine-tuning pre-trained
model to the Human3.6M dataset. The batch size of the
HRNet is set to 64 for training, and the initial learning rate
is 5e-4, using the step learning rate decaying policy. The fi-
nal layer of the HRNet model is modified to learn to regress
a set of a 17-joint skeleton.

Adam optimizer [4] is employed for the model training
with the initial learning rate of 4e-5, using the exponen-
tial learning rate decay schedule (the multiplicative factor
is set to 0.99, 0.99, and 0.995 for the Human3.6M, MPI-
INF-3DHP, and HumanEva, respectively). Data augmenta-
tion is applied to training and test data by flipping the pose
horizontally, following [5, 10].

A stride data sample strategy is utilized to split the long
sequence data during our training (also see analysis in Sec-
tion C). We sample the 2D keypoints in a video with a stride
step that is equal to the sequence length of the network in-
put.

B. Loss Function Details
We apply multiple loss functions in the training stage

to supervise the model training. Based on commonly-used
mean per-joint position error (MPJPE), we use a weighted
mean per-joint position error (WMPJPE) to re-weight dif-
ferent joints of the body. Larger weights are used for joints
with drastic motion amplitudes. According to the amplitude
of motion, all body joints are divided into three categories:
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Algorithm 1: Mixed Spatio-Temporal Encoder
Configuration

Input: Number of the stacked MixSTEs: L,
2D pose sequence: PN,T = {p0,0, ...pN,T },
Dimension of attention mecahnism: d.

Output: High-dimensional output F l for each
sequence

T , N ← shape of PN,T

F l
N,T = LinearProjection(PN,T )

for l← 0 to L− 1 do
if l = 0 then

F l
N,T ← Spatio-Temporal Position Epos

// Spatial Block
Sl
0:N ← Exact N dimension of FN,T

AS = Spatial Attention of {p0, ...pN}
Sl
0:N = Sl

0,...N +AS

Sl
0:N = Sl

0,...N +MLP (Sl
0:N )

F l
0:N,T ← Sl

0:N

// Temporal Block
T l
0:T ← Cross N and T Dimension of F l

N,T

ATi = Temporal Attention for each joint
{pi,0, ...pi,T }
AT = Concat({AT0, ...ATT })
T l
0:T = T l

0:T +AT
T l
0:T = T l

0:T +MLP (T l
0:T )

F l
N,0:T ← T l

0:T

return FL−1
N,0:T

the torso, the limb mid, and the limb end. The weight as-
signed to the torso is the smallest, and the weight assigned
to the endpoints is the largest.

The WMPJPE Lw with weight wi for i-th joint is com-
puted as follows:

Lw =
1

N

N∑
i=1

(wi ×MPE(pi, gti)), (1)
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whereN indicatesN joints of skeleton, p and gt are the pre-
dicted and ground truth of 3D pose. We use MPE function
to denote the mean position error (MPE) of the i-th joint in
time dimension:

MPE(pi, gti) =
1

T

T∑
j=1

‖ pj,i − gtj,i ‖22, (2)

where T indicates the number of frames of sequence. The
predicted and ground truth 3D pose in i-th frame are de-
noted as pj,i and gtj,i. WMPJPE provides different super-
vision for each joint in space. Consisdering there is no much
displacement of poses between adjacent frames, we follow
the [3] and apply the L2 norm of the first derivative of WM-
PJPE in the time dimension to one of the loss functions in
order to make the pose smooth in the time dimension. The
temporal consistency loss (TCLoss) Lt is defined as:

Lt =
1

NT

T∑
j=2

N∑
i=1

‖ (pj,i − pj−1,i) ‖22, (3)

where pj,i is the predicted location of the i-th joints in j-th
frame.

The MPJVE Lm is also utilized in our model to improve
the motion coherence [5] between the predicted poses and
ground truth.

During the training stage, λt and λm are applied to
weight Lt and Lm. Therefore we train the network in an
end-to-end manner with the multi loss function:

L = Lw + λtLt + λmLm. (4)

C. Additional Results
Comparison with PoseFormer. We compare the param-
eters, memory occupy, and training time per epoch of our
model with PoseFormer [10]. For both our method and
PoseFormer, we use 4 transformer encoders and set the in-
put sequence length to be 243. When increasing the di-
mension of the self-attention block, we observe that Pose-
Former requires more parameters, GPU memory, and run-
ning time of a training epoch than Ours (see Figure 7, show-
ing our proposed MixSTE is more efficient.). As shown
in the Table 8, the proposed method achieve better perfor-
mance (lower MPJPE) with faster speed (higher FPS, lower
FLOPs) than PoseFormer. The computing of FLOPs fol-
lows the [5, 10].
Effect of Data Sample Strategy. As shown in Figure 8,
our stride data sample strategy results in fewer iterations
to complete each training sample, thereby reducing overall
training time. The stride data sample strategy is evaluated
with different intervals. The max interval is equal to the in-
put length, which means there is no overlap between frames.
When interval = 1, the sampling is step by step. As shown
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(b) The GPU memory occupy comparisons.
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(c) The training time for each epoch comparisons.

Figure 7. Comparison of parameter, memory occupy, and training
time with PoseFormer [10]. The dimension size is the dimension
of each query, key, and value in the encoders, which is the main
factor of model size.

in the Table 9, our method with max interval achieves best,
which demonstrates that the strategy keeps the performance
and successfully reduces the training time.



Methods FPS↑ FLOPs (M)↓ MPJPE↓
PoseFormer [10] (T=81) 288 1593 44.3
Ours (T=81) 965 965 42.5
Ours (T=243) 897 645 40.9

Table 8. Comparison with PoseFormer [10] in terms of frame
per second (FPS), computating cost for each frame (FLOPs), and
MPJPE. The evaluation is performed on Human3.6M testset S9,
S11 under Protocol 1 with CPN [1] as the 2D pose detector. Com-
putation is done on a single GTX 2080Ti GPU.

No overlapping: 
stride=243, T=243, iterations = 1024//243+1=5

Batch Size=1024

Padding
stride=T=243

………………………………………..

T=243stride=1

Overlapping: 
stride=1, T=243, iterations = 1024//1 = 1024

……… ……………… ………

2D Keypoints Sequence

Figure 8. The processing example of stride data sample strategy.
The stride example has fewer iterations than the example without
stride sample, leading to less training time.

Input Length Sample Strategy MPJPE

27 Ours (interval=27) 54.3
27 interval=9 56.9
27 interval=3 67.3
27 interval=1 78.8

Table 9. Ablation studies on the data sample strategy on Hu-
man3.6M under Protocol 1 with MPJPE (mm). The input length
is set to 27, and the intervals are 27, 9, 3, 1, respectively.

Discussion of Sparse Attention. To further explore the
sparse attention for our proposed method, we experiment
some recent sparse attention works [2, 6, 9, 11]. The result
shown in the Figure 9 illustrates the different sparse atten-
tion prototypes can effectively converge in our framework
and present similar convergence rates in training and test-
ing. But there is still an accuracy gap compared with the
full attention [8] used in our approach. Therefore, suitable
sparse attention mechanism for our method could be one of
the exploration directions in the future.
Qualitative Results of Attention Visualization. The qual-
itative results of all attention heads are also reported. We
evalauate the proposed model on the Human3.6M dataset
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Figure 9. Comparison of different sparse attention and full atten-
tion mechanism for our method.

test set S11 with SittingDown action. The spatial attention
maps and temporal attention maps are shown in the Fig-
ure 10 and Figure 11, respectively. We can observe that
attention heads have different intensities on body joints and
frames, representing the local relationships modeled among
the input sequence in each heads domain. The attention
maps in the spatial domain tend to focus on some of the
joints, and the maps in the temporal domain tend to have
strong sensitivity over certain frames themselves. It illus-
trates that the feasibility of sparse attention in the temporal
domain.
Qualitative Results of Inference in-the-Wild Video. Esti-
mating the 3D human pose from in-the-wild videos is more
challenging and meaningful. We apply CPN [1] as the 2D
keypoints detector firstly, and then we utilize the MixSTE
to obtain the 3D human pose. As shown in the Figure 12,
our method achieves high robustness and accuracy in most
of the frames of wild videos with challenging scenarios of
occlusion and extremely fast motion.
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Figure 10. Qualitative Results of all heads attention maps among body joints. The x-axis (horizonal) and y-axis (vertical) to the joints
queries and the predicted outputs, respectively. Each row shows the attention weight wi,j of the j-th query for the i-th output. The attention
output is normalized from 0 to 1, and lighter color indicates stronger attention.

Figure 11. Qualitative Results of all heads attention maps among sequence frames. The x-axis (horizonal) and y-axis (vertical) correspond
to the frames queries and the predicted outputs, respectively. Each row shows the attention weight wi,j of the j-th query for the i-th output.
The attention output is normalized from 0 to 1, and lighter color indicates stronger attention.



Figure 12. Qualitative Results of in-the-wild video. The video frame sequences with detected 2D joints and corresponding recontructed
3D poses are shown.
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