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1. Details of The Proposed IA-SSD

(1) Detailed Network Architecture. Here, we provide the
detailed architecture of our IA-SSD. The proposed IA-SSD
has a lightweight backbone, which consists of three SA (Set
Abstraction) layers [4] with only two radii for the spheri-
cal neighbor query. The detailed architecture deployed on
KITTI Dataset is as follows:

syntax: SA(npoint, [radii], [nquery], [dimension])

SA(4096, [0.2, 0.8], [16, 32], [[16, 16, 32], [32, 32, 64]])

→ MLP (96 → 64)

SA(1024, [0.8, 1.6], [16, 32], [[64, 64, 128], [64, 96, 128]])

→ MLP (256 → 128)

SA(512, [1.6, 4.8], [16, 32], [[128, 128, 256], [128, 256, 256]])

→ MLP (512 → 256)

where npoint denotes the number of sampled points,
[radii] denote the grouping radii, [nquery] denotes the
number of grouping points, [dimension] denotes the fea-
ture dimensions.

The class/centroid-aware prediction layer:

MLP (256 → 256 → 3)

The architecture of the contextual instance centroid per-
ception module is as follows:

MLP (256 → 128 → 3)

The architecture of centroid-based instance aggregation
is as follows:

SA(256, [4.8, 6.4], [16, 32], [[256, 256, 512], [256, 512, 1024]])

→ MLP (1536 → 512)

The final detection head is composed of two branches:

cls branch : FC(512) → FC(256) → FC(256) → FC(3)

reg branch : FC(512) → FC(256) → FC(256) → FC(30)

Considering the large-scale spatial ranges and increas-
ing number of potential instances in the Waymo and ONCE
datasets, the number of sampled points are improved to
16384, 4096, 2048, and 1024 in our framework, and the
contextual centroid perception boundary is improved to
2.0m. The rest of the hyperparameters are kept consistent
for a fair comparison.

2. Additional Implementation Details

(1) Data augmentation. During training, We also apply
two data augmentation strategies including scene-level aug-
mentation and object-level augmentation. The detailed set-
tings and hyperparameters are as follows:
Scene-level augmentation:

• Random scene flip with a 50 % probability.
• Random scene rotation around z-axis with a random

value from [−π
4 ,

π
4 ].

• Random scene scaling with a random factor from
[0.95, 1.05].

Object-level augmentation:

• Transform objects from other scenes. In particular,
20 cars, 15 pedestrians, and 15 cyclists are copied to
the current scene. Note that, the minimum number of
points for a sampled instance is 5.

(2) Training and inference. We train the proposed IA-SSD
in an end-to-end fashion with a maximum of 80 epochs.
Adam solver with onecycle learning strategy [8] is used for
optimization. In our experiment, the batch size is set to 8,
and the learning rate is set to 0.01. During inference, our
IA-SSD is able to take raw point clouds and generate pro-
posals for all objects in a single forward pass. Finally, all
proposals are filtered by 3D-NMS post-processing with an
IoU threshold of 0.01 on KITTI and 0.1 on Waymo/ONCE.



1st layer 2nd layer 3rd layer 4th layer Recall Car Recall Ped. Recall Cyc. Car Mod Ped. Mod Cyc. Mod
(IoU=0.7) (IoU=0.5) (IoU=0.5)

Random Random Random Random 67.4% 72.1% 57.3% 75.02 51.16 66.07
D-FPS D-FPS D-FPS D-FPS 91.4% 69.1% 71.6% 78.12 50.46 65.19
D-FPS Feat-FPS Feat-FPS Feat-FPS 95.3% 80.1% 91.7% 79.00 54.31 71.08
D-FPS D-FPS Cls-aware Cls-aware 97.9% 97.4% 92.7% 79.19 58.81 70.15
D-FPS D-FPS Cls-aware Ctr-aware 97.9% 97.7% 96.3% 79.54 58.49 71.33
D-FPS D-FPS Ctr-aware Ctr-aware 97.9% 98.4% 97.2% 79.57 58.91 71.24

Table 1. The correlation between the instance recall ratio and the final detection performance.

Method 256p 1024p 4096p 16384p
D-FPS [3] <0.1 ms 0.5 ms 2.8 ms 23.7 ms

Feat-FPS [11] 0.3 ms 0.7 ms 4.2 ms 40.6 ms
Cls/Ctr-aware 0.2 ms 0.2 ms 0.3 ms 0.5 ms

Method 256p 1024p 4096p 16384p
D-FPS [3] <1 MB <1 MB <1 MB <1 MB

Feat-FPS [11] 64 MB 104 MB 448 MB 6228 MB
Cls/Ctr-aware 0.25 MB 1 MB 4 MB 17 MB

Table 2. Time and memory consumption of sampling methods.

3. Additional Experimental Results

(1) Preserving more foreground points really benefits
the final detection performance? As mentioned in Sec-
tion 3.2, two instance-aware strategies are proposed to keep
high instance recall while hierarchically downsampling the
points. However, it remains unclear that whether the more
foreground points really benefit the final detection perfor-
mance. To this end, we further justify the motivation of our
IA-SSD here. Specifically, we conduct several groups of ex-
periments based on our framework with different sampling
strategies. Note that, the network architecture and param-
eter settings are kept consistent. The quantitative detection
results, accompanied with the instance recall ratio after the
last downsampling layers by using different possible com-
binations of the sampling approaches are shown in Table 1.

From the results in Table 1 we can see that: (1) the
instance recall ratio is positively correlated with the final
detection performance, especially for small objects with a
limited number of points such as pedestrians and cyclists.
(2) The detection performance of cars is relatively robust
to the variations of sampling strategies, primarily because
that car usually has a sufficient number of foreground points
remaining after downsampling, hence relatively easy to be
detected. (3) Adopting the proposed instance-aware sam-
pling strategies at the early encoding layers may negatively
affect the final detection performance, primarily because
of the insufficient semantic information in the early latent
point features. (4) Deploying the proposed instance-aware
downsampling strategies at the last two encoding layers can
significantly improve the detection performance. Overall,
this experiment further demonstrates that more foreground
points are appealing for object detection task, especially for
small but important objects.

Method Type Car Mod Ped. Mod Cyc. Mod
(IoU=0.7) (IoU=0.5) (IoU=0.5)

Voxel-based
SECOND [10] 1-stage 78.62 52.98 67.15
PointPillars [1] 1-stage 77.28 52.29 62.28

Part-A2 [7] 2-stage 79.40 60.05 69.90
Point-Voxel PV-RCNN [5] 2-stage 83.61 57.90 70.47

Point-based
PointRCNN [6] 2-stage 78.70 54.41 72.11

3DSSD [11] 1-stage 79.06 10.49 16.93
IA-SSD (Ours) 1-stage 79.57 58.91 71.24

Table 3. Performance comparison of different detectors based on
the OpenPCDet library. Note that, all detectors are trained with
multi-class objects together, and the results are achieved by using
a single detection model.

Dataset Mem. Paral. Speed⊥ Speed⊤ Input Scale
Waymo [9] 626 MB 16 9† 14 81920

433 MB 23 8† 20 65536
ONCE [2] 401 MB 25 11† 21 60k

Table 4. Efficiency of our IA-SSD on Waymo and ONCE Datasets.
The number of input points to our framework is increased, con-
sidering the large-scale panoramic scenes compared with KITTI.
Here “Mem.” and “Paral.” denote the GPU memory footprint
per frame during inference and the maximum number of batches
that can be parallelized on one RTX2080Ti (11GB). ”Speed⊥”,
”Speed⊤” is inference speed when processing one frame or full-
loaded GPU memory. † We divide the whole scene into four par-
allel parts in the first sampling layer.

(2) Efficiency of Sampling. We further explore the effi-
ciency of different sampling strategies, to have an intuitive
idea of the advantages of our instance-aware sampling. Ta-
ble 2 compares the time and memory consumption of differ-
ent sampling strategies with a varying number of points. We
can clearly see that the proposed instance-aware sampling
has superior efficiency compared with the Feat-FPS [11],
hence leading to a higher frame rate of our method during
inference.

(3) Evaluation on KITTI validation set. We also report
the detection results achieved by several representative ap-
proaches on the validation set of the KITTI Dataset in Table
3. Note that, all results achieved by baselines are repro-
duced based on the OpenPCDet1. In particular, all base-
lines are trained with multi-class objects in a single model
for a fair comparison. It can be seen that our single-stage
IA-SSD achieves superior detection performance compared

1https://github.com/open-mmlab/OpenPCDet



with other point-based baselines. We also noticed that the
prior SoTA detector 3DSSD2 achieve poor results on the
class of pedestrian and cyclist, further demonstrating the ad-
vantages of our IA-SSD.
(4) Efficiency of our IA-SSD on large-scale LiDAR sce-
narios. To further verify the efficiency of our IA-SSD on
large-scale 3D datasets, we further report the efficiency of
our IA-SSD on the validation set of Waymo and ONCE
datasets. As shown in Table 4, the proposed IA-SSD
can still achieve satisfactory real-time performance in such
complex panoramic scenes.
(5) Qualitative visualization of our instance-aware
downsampling. To intuitively compare the performance
of different sampling approaches, we qualitatively show
the visualization of the downsampled point clouds achieved
by different approaches in Figure 1. Clearly, the pro-
posed instance-aware sampling can effectively preserve
more foreground points (shown in red), especially for fore-
ground points belonging to small and sparse instances (e.g.,
pedestrian), as well instances far away from the sensors.
(6) Visualization of the Contextual Centroid Perception.
We also visualize the results produced by our contextual
centroid perception module in Figure 2. It is clear that the
downsampled point clouds at this stage are quite sparse and
insufficient, which makes the centroid estimation and in-
stance regression considerably difficult. Therefore, it is nec-
essary to exploit the useful information around the instance,
even outside the ground-truth bounding boxes. Thanks to
the proposed contextual centroid perception module, our
IA-SSD can even precept the objects with extremely indis-
tinguishable geometry and limited points (shown in purple
dotted circles). This further demonstrated the effectiveness
of the proposed module.
(7) Additional qualitative detection results on the KITTI
Dataset. We also show extra qualitative detection results
achieved by our IA-SSD on the validation (Figure 3) and
test (Figure 4) split of the KITTI Dataset. It can be seen
that our IA-SSD can achieve satisfactory detection perfor-
mance on this dataset, even for some challenging cases. It
is also worth mentioning that the detection results of dif-
ferent objects are achieved by our IA-SSD in a single pass,
instead of the common practice to train separate models for
different objects.
(8) Additional qualitative detection results on the large-
scale datasets. Here, we present extra qualitative detection
results achieved by our IA-SSD on two large-scale datasets
with challenging panoramic scenarios. Figure 5 and Fig-
ure 6 illustrate the detection results on the validation set of
Waymo and ONCE Dataset respectively. It can be seen that
our IA-SSD can also achieve promising detection perfor-
mance in challenging and complex 3D scenes.

2https://github.com/qiqihaer/3DSSD-pytorch-openPCDet

4. Potential Negative Societal Impact
In this paper, we proposed an efficient point-based solu-

tion capable of achieving promising low-cost objects detec-
tion in autonomous driving scenarios. Our model is trained
and evaluated totally based on open-sourced datasets, and
there is no known potential negative impact on society.

5. Video Illustration
We provide a video demo illustrating the detection per-

formance of our IA-SSD in 3D point clouds, which can be
viewed at https://youtu.be/3jP2o9KXunA.
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Figure 1. Qualitative visualization of the downsampled point clouds achieved by different sampling strategies (From left to right, D-FPS,
F-FPS, and the proposed instance-aware sampling). Note that, the raw point clouds and representative points are colored in white and gold,
respectively. Positive representative points are highlighted in red.

Figure 2. Visualization of the contextual centroid perception on the validation spit of the KITTI dataset. All representative points and
predicted centroid are colored in gold and red, respectively. In particular, we also show the offsets of representative points inside/around
the objects in red/gold. Best viewed in color.



Figure 3. Extra qualitative results achieved by our IA-SSD on the validation set of the KITTI Dataset. We also show the corresponding
projected 3D bounding boxes on images. Note that, the ground-truth bounding boxes are shown in red, and the predicted bounding boxes
are shown in green for car, cyan for pedestrian, and yellow for cyclist. Best viewed in color.



Figure 4. Extra qualitative results achieved by our IA-SSD on the test set of the KITTI Dataset. We also show the corresponding projected
3D bounding boxes on images. Note that, there is no ground-truth bounding boxes available, hence we only show the predicted bounding
boxes in green for car, cyan for pedestrian, and yellow for cyclist. The centroid predictions are marked in red, while the 256 representative
points are shown in gold. Best viewed in color.



Figure 5. Extra qualitative results achieved by our IA-SSD on the val set of the Waymo Dataset. Here We demonstrate our detection results
on some challenging scenes. Note that, the ground-truth bounding boxes are shown in red, and the predicted bounding boxes are shown in
green for vehicle, cyan for pedestrian, and yellow for cyclist. Best viewed in color.

Figure 6. Extra qualitative results achieved by our IA-SSD on the val set of the ONCE Dataset. Here We demonstrate our detection results
on some challenging scenes. Note that, the ground-truth bounding boxes are shown in red, and the predicted bounding boxes are shown in
green for vehicle, cyan for pedestrian, and yellow for cyclist. Best viewed in color.


