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Table 1. Maximum bounds of physical properties.

Dataset |v| al as dal/dt das/dt

Apolloscape [4] 21.078 9.914 1.912 16.836 3.154
NGSIM [1] 20.830 1.455 0.620 1.955 0.925

nuScenes [3] 17.198 2.550 0.936 3.914 1.070

Notes: |v| – scalar velocity (m/s); al – longitudinal acceleration (m/s2); as –
lateral acceleration (m/s2); dal/dt – derivative of longitudinal acceleration

(m/s3); das/dt – derivative of lateral acceleration (m/s3).

1. Implementation Details
1.1. Open-sourced Code

Our implementation is open source at
Github (https : / / github . com / zqzqz /
AdvTrajectoryPrediction), which is a frame-
work of testing adversarial attacks and mitigation methods
on trajectory prediction algorithms.

1.2. Bounds of Physical Properties

We restrict 5 physical properties of perturbed trajecto-
ries: (1) scalar velocity, (2) longitudinal acceleration, (3)
lateral acceleration, (4) derivative of longitudinal accelera-
tion, and (5) derivative of lateral acceleration. For the three
datasets (i.e., Apolloscape, NGSIM, and nuScenes), we se-
lect different bounds of physical properties according to the
data distribution following the approach mentioned in the
main paper. We report the values of such bounds in Table 1.

1.3. Hyper-parameters of Attacks

In general, both white-box and black-box attacks are
iteration-based methods, which require parameters about
evolution speed and maximum iterations. When tuning the
parameters, we monitor the objective loss over time. The
parameters are proper if the loss is overall decreasing and
stays low stably in the end.

For the PGD-based white box attack, we use Adam op-
timizer with a learning rate of 0.01 and set the maximum
iteration to 100. For PSO-based black box attack, we set
the number of particles to 10, inertia weight to 1.0, accel-
eration coefficients to (0.5, 0.3), and the maximum iteration

to 100.

1.4. Implementation of Mitigation

For data augmentation, we randomly select 50% (the pa-
rameter is fine-tuned) of trajectories to add perturbation dur-
ing the training. The added perturbation is random and un-
der the hard constraints of perturbation. We also double the
maximum training iteration.

For trajectory smoothing, we use a linear smoother with
a convolution kernel ( 13 ,

1
3 ,

1
3 ), which takes the mean of

three trajectory positions as the smoothed position at the
middle time frame. Formally, we denote the trajectory as
s1, . . . , si, . . . , sN where N is the total length of the trajec-
tory and si (i ∈ 1 . . . N ) is the two-dimensional trajectory
location at time frame i. The smoothed trajectory locations
s′i =

1
3si−1 +

1
3si +

1
3si+1 (i ∈ 1 . . . N − 1).

For detection, we prepare a set of normal trajectories
(other than training/testing data used in the attack experi-
ments) and generate a set of abnormal trajectories by adding
random perturbation on normal trajectories. We use the
normal and perturbed trajectories together to fit the SVM
model and find out proper thresholds. The SVM model uses
RBF kernel, implemented in the scikit-learn library. The
threshold parameters for detection are selected to achieve
the best Area Under Curve (AUC) score of Receiver Oper-
ating Characteristics (ROC) curve.

2. Hard Scenarios for Prediction

In the main paper we mention that existing prediction
models have high prediction error on several hard scenarios.
In this section, we visualize two scenarios in Figure 1 and
Figure 2. In each figure, we present the ground-truth tra-
jectory of the target vehicle and prediction made by tested
models. In Figure 1, the target vehicle takes brake in its fu-
ture trajectory and finally stops at the stop sign. However,
the prediction models cannot foresee such braking behav-
ior and the predicted trajectory still has a steady velocity. In
Figure 2, the target vehicle turns right in its future trajectory
but the pattern of turning is not obvious in the history trajec-
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Figure 1. Hard scenario: stopping at a stop sign.
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Figure 2. Hard scenario: turning right at an intersection.

tory. Therefore, it is hard for prediction models to correctly
predict such turning trajectory.

3. More Case Studies
The case study in the main paper discusses a scenario

where the attacker leverages high prediction error to spoof
a fake lane changing behavior. In this section, we show two
more case studies to demonstrate attack impacts consider-
ing various attack goals.

First, the adversarial trajectories with high prediction
error can also hides existing driving behaviors instead of
spoofing behaviors. As shown in Figure 3, the OV is in
fact shifting to the left lane (the AV’s lane) and the predic-
tion correctly captures the behavior without perturbation.
The average deviation to right is 0.61 meter originally. Un-

Figure 3. Case study: deviation to right hides a real lane chang-
ing behavior. GRIP++ model, Apolloscape dataset, white-box
multi-frame attack, mitigation of data augmentation and train-time
smoothing.

Figure 4. Case study: deviation to rear spoofs a fake brak-
ing behavior. GRIP++ model, Apolloscape dataset, white-box
multi-frame attack, mitigation of data augmentation and train-time
smoothing.

der the white-box attack (3-second length, 1-meter devia-
tion bound, maximizing deviation to right), the adversar-
ial trajectory is still natural but the predicted trajectories
are going straight without any pattern of changing lanes.
The average deviation to right is increased to 1.22 meters
(2×). The attack significantly reduces the time for the AV
to safely respond to the lane changing behavior. Originally,
the AV learn the OV will change lane at time frame 1 be-
cause the prediction at time frame 2 already cross with the



AV’s future trajectory. After the attack, the AV does not
acknowledge the lane changing until time frame 7. Hence,
the AV receives the lane changing signal 2.5 seconds late
which may cause a hard brake or even a rear-end collision.
What is worse, the mitigation is not effective on this case
because the adversarial trajectory is smooth and natural be-
tween time frame 1 to 6.

Second, the longitude deviation is as dangerous as the
lateral deviation. In Figure 4, the OV is driving in front of
the AV with a distance of about 10 meters. Originally, the
OV moves in a almost constant velocity and the average de-
viation to rear direction is 0.22 meter. After the white-box
attack (3-second length, 1-meter deviation bound, maximiz-
ing deviation to rear), the OV stays in its route but the veloc-
ity is not stable. On the adversarial trajectory, the predicted
trajectories show that OV is going to decelerate and the de-
viation to rear is increased to 2.99 meters (14×). In time
frame 2 for instance, the length of the predicted trajectory
is shortened by 50% and the AV’s planning logic decides
to deceleration to avoid a potential collision. Depending on
the distance between the OV and the AV, the attack may
cause speed drop, a hard brake, or collision of the AV. Miti-
gation of trajectory smoothing is effective on this case. The
trajectory smoothing alleviates the fluctuation of the OV’s
velocity.

4. Realistic Attack Setting

As discussed in the threat model, the adversary does not
have the ground truth of other vehicles/pedestrians when
computing the adversarial trajectory. Therefore, we con-
sider a more realistic setting where the adversary includes
predicted trajectories in the input of generating adversarial
examples. We select 75 scenarios in Apolloscape dataset
and analyze attacks on GRIP++ model. In each scenario,
the adversary has full knowledge of trajectories in the first 3
seconds, predicts trajectories of all other objects between
3-6 seconds using GRIP++, and generates the adversary
trajectory between 3-6 seconds. Prediction error (six met-
rics) of the above attack is 6.82/10.41/2.61/2.38/3.92/5.53
meters, which is 95% of the attacks using ground-truth ob-
ject trajectories. The adversary can approximate the future
knowledge to generate attacks whose effectiveness is almost
equal to ideal white-box attacks in Table 3 in the main pa-
per because the target vehicle’s trajectory itself dominates
the prediction results.

5. Attack Real-world AV System

Our attack is effective on real AV software, Baidu Apollo
6.0 [2], which uses an LSTM predictor on 2 seconds of his-
tory trajectory in a frequency of 10 Hz. Figure 5 shows
that the adversarial trajectory spoofs fake lane changing (in
the left figure), resulting in a brake of the right Apollo AV

(a) Attacker’s perturbed trajectory and
prediction made by Apollo. (b) Simulator LGSVL’s view.

Figure 5. Reproducing a prediction attack on Baidu Apollo 6.0.

(in LGSVL simulator [5]). Second, history length and fre-
quency are system-specific settings, and prediction models
mostly choose 2-3 seconds of history and 2-10 Hz. Al-
though we showed different values for the two parameters
in Tab.1, we did not observe a clear correlation between the
parameters and prediction accuracy. We can openly discuss
this question as future work.
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