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(a) (b) (c) (d)

Figure 1. The selected real-world lighting reference images. (a)
Left-side lighting. (b) Right-side lighting. (c) Bright frontal light-
ing. (d) Dark lighting.

1. More Details of Evaluation Protocol

In Section 5.1 of the article, we introduce the evaluation
protocol for analysing the predicted geometry and texture.
To calculate the metric Cosine-O, we directly compute the
cosine similarity between the original image Ii and the ren-
dered one Îi in the representation of pretrained ArcFace [3]
latent space. This metric is also widely-used in LAP [16]
and VariTex [2]. To further analyse the robustness and con-
sistency of the image formation procedure, we calculate an-
other two metrics Cosine-P and Cosine-L. Cosine-P is com-
puted between Ii and a rotated rendered image Îωi with a
pose ω. For each method, we uniformly sample 13 yaw an-
gles in [−90◦,+90◦] (every 15◦ once) and 7 pitch angles
in [−30◦,+30◦] (every 10◦ once) for ω, and render 20 im-
ages with these poses. Then we calculate the mean cosine
similarity of ArcFace representation between these images
and the original one. In this way, the metric Cosine-P is
able to reveal the robustness of a method on pose variation.
For Cosine-L, we relight the rendered image with 4 differ-
ent lights each of which is predicted by the corresponding
method from an unseen real-world reference image (shown
in Fig. 1), and calculate the mean cosine similarity of Ar-
cFace representation between relit images and the original
one. In this way, the Cosine-L can indicate if the method
guarantees a consistent identity under light variation.

2. The Resterization Module

In section 4.2 of the paper, we introduce the proposed
rasterization module. Actually, as our texture is not RGB

but implicit, we cannot directly use differentiable renderer
such as Neural Mesh Renderer (NMR) [10] to perform ras-
terization for it. Following [2, 15, 16], we use a grid sam-
pling function [9] to solve this problem. First, we use
NMR to rasterize only the depth map di, obtaining a ver-
sion ḋi = fR(di, ωi) of the depth map as seen from the in-
put viewpoint. With the warped depth ḋi, we can inverse the
function fR to find the warp field from the observed view-
point to the canonical viewpoint. Then, with the warp field,
we can use grid sampling function fsam [9] to bilinearly
sample the shaded canonical implicit texture b̂i, b̂

c
i , obtain-

ing ḃi, ḃ
c
i in the observed viewpoint which is 2D spatially-

aligned to the input image Ii.

3. More Implementation Details

To implement the rasterization module, following [15]
and [16], we set the Field of View (FOV) as 10◦. Our Phy-
DIR framework is trained with the loss in Eqn. (7) of the ar-
ticle. Actually, when training the neural reasoning networks
Φb,Φn, we compute Lshape and Ll using the pretrained 3D
proxy. At the early stage of training, we remove the Ltex

because the Φb has not converged with stable results at this
time. After the Φb starts to predict reasonable implicit tex-
ture maps, we add Ltex to constrain the texture consistency.

At the stage of geometry learning, as described in Sec.
4.4, we use a new Φd which contains extra upsampling-
conv layers than the corresponding proxy network of Un-
sup3D [15] or LAP [16]. These extra layers are utilized
to upsample the predicted canonical depth to the size of
256×256. We use a same architecture as the proxy to build
Φω,Φl. Φω,Φl and the new Φd can be trained from the
weights of proxy or from scratch. During the training of
these 3D networks, we freeze the Φn and Φb, and com-
pute Lshape and Ll using the pretrained 3D proxy. After
this stage, we perform the joint training of all the networks.
During the joint training stage, we compute Lshape and Ll

using our 3D networks for self-enhancing and regularizing.
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4. Evaluation of State-of-the-art Method
For the methods that report their results on the bench-

marks, we directly use the reported numbers if the set-
ting is the same with ours. For other results, we repro-
duce the method using the official released code, or im-
plement the model with the provided pre-trained weights.
For the graphics-renderer-based methods, we use the of-
ficial code of Unsup3D [15], LAP [16], D3DFR [5] and
DECA [6]. Their project pages can be easily found in
GitHub. For the neural rendering and 3D-aware generative
methods, we compare with the ones with released code, in-
cluding DFG [4], PIRender [12] and VariTex [2]. All of
these methods are very recent state-of-the-art. To make
them address the real images, we use a GAN inversion
method proposed in Image2StyleGAN [1] with 2000 itera-
tions of each image. This setting is enough for each method
to inverse images into their latent space. Note that, there are
also other neural rendering methods such as StyleRig [14]
and StyleRenderer [11], but either of them release the code
or pre-trained weights. This make it very difficult to make
a fair comparison with them. Even though, we believe that
extensive analyses have been performed in the paper with
enough strong baseline approaches.

5. Evaluation of Relighting
As we disentangle and model the facial light, PhyDIR

is able to control the lighting effect of the rendered image.
In the article, we have made qualitative comparisons with
the state-of-the-art methods. Here we perform qualitative
evaluations. Following Hou et al. [8], we use Multi-PIE [7]
dataset. For each Multi-PIE subject and each session, we
randomly select one of the 19 images as the source image
and one as the target image, which serves as the relighting
ground truth. The target image’s lighting is predicted by
each method, then used to relight the source image. This
leads to a total of 921 relit images. Same as [8], we use
Si-MSE [17] and DSSIM as the metrics.

Method Si-MSE DSSIM
Unsup3D [15] 0.0344 0.2130
LAP [16] 0.0319 0.1978
D3DFR [5] 0.0419 0.3422
DFG [4] 0.0301 0.2015
DPR [17] 0.0282 0.1818
Hou et al. [8] 0.0220 0.1605
Ours (Unsup3d-proxy) 0.0238 0.1781
Ours (LAP-proxy) 0.0230 0.1667

Table 1. Relighting evaluation of different methods.

To make a fair comparison, we only calculate the met-
rics in facial regions for the face modeling methods. The
results are illustrated in Table 1, where our method outper-
form most of the approaches. Note that, the algorithm in [8]

Input Ours Unsup3D LAP

Input Ours Unsup3D LAP

Input

Input

(a) (b)

(c) (d)

Figure 2. Failure case of our method. (a) Extreme expression. (b)
Heavy make-up. (c) Large artifact. (d) Extreme lighting.

is specially proposed for 2D portrait relighting and trained
on Multi-PIE, while our method is able to tackle 3D face
modeling and is trained on other dataset. Even confronting
a more challenging problem, our performance is competi-
tive. These observations further demonstrate our effective-
ness on light and face modeling.

6. Limitation & More Results

In the paper, we have shown results on some challenging
cases, e.g., faces of large pose/expression, side light and
non-Caucasian races. Our method is able to address these
conditions. However, for some possible extreme factors, the
method may provide unsatisfactory results.

We illustrate several failure cases in Fig. 2. The condi-
tion (a) is extreme expression which is challenging for non-
parametric methods. Unsup3D [15] and LAP [16] fail on
such a case. As our method leverages these two approaches
as proxies, it also suffer from lack of 3DMM prior. In
Fig. 2-(b), we observe that heavy make-ups also influence
the reconstruction results. As some make-ups may bring
colors or appearances that hardly appear in the dataset, the
method struggles to correctly understand them, predicting
improper local details. In Fig. 2-(c), we show the influence
of the large artifacts. As no 3DMM assumption is used, the
methods struggle to correctly tackle the artifacts. In Fig. 2-
(d), we show a image with extreme lighting effect and ap-
pearance. As such an effect or appearance hardly appears
in the dataset, PhyDIR may provide unusual artifacts when
editing the facial lighting condition. In summary, as Phy-
DIR is data-driven and non-parametric, it learns the statis-
tics of the dataset or domain with out a reliable shape as-
sumption. Besides the aforementioned cases, some other
infrequent cases such as giving a light from bottom of a
face, very dark conditions or side poses, may also make the
method provide imperfect predictions. On the other hand,
PhyDIR currently is able to tackle diffuse modeling but
specularity modeling, as we use no statistical model such
as Albedo MM [13]. Further, as the neural image forma-
tion procedure is difficult to analytically described, we can-
not guarantee a totally robust rendering process. We further
show more results of PhyDIR in Figs. 3 and 4.
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hofer, and Christian Theobalt. Stylerig: Rigging stylegan for
3d control over portrait images. In CVPR, pages 6142–6151,
2020. 2

[15] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable 3d
objects from images in the wild. In CVPR, pages 1–10, 2020.
1, 2

[16] Zhenyu Zhang, Yanhao Ge, Renwang Chen, Ying Tai, Yan
Yan, Jian Yang, Chengjie Wang, Jilin Li, and Feiyue Huang.

Learning to aggregate and personalize 3d face from in-the-
wild photo collection. In CVPR, pages 14214–14224, 2021.
1, 2

[17] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, and David W Ja-
cobs. Deep single-image portrait relighting. In ICCV, pages
7194–7202, 2019. 2

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#3883

CVPR
#3883

CVPR 2022 Submission #3883. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. More results on predicted facial shape and pose control.
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Target

Figure 4. More results on lighting control.
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