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A. Datasets
We evaluate our PointCLIP on three well-known

datasets: ModelNet10 [8], ModelNet40 [8] and ScanOb-
jectNN [6]. ModelNet10 consists of 4,899 synthetic meshed
CAD models with 10 indoor categories, 3,991 for training
and 908 for testing. ModelNet40 is larger with 12,311 sam-
ples of 40 common categories, 9,843 for training and 2,468
for testing. In both datasets, we uniformly sample 1,024
points from each object as the network’s input. ScanOb-
jectNN includes 2,321 training and 581 testing point clouds
of 15 categories collected directly by real-world scans. Dif-
ferent from synthetic data with complete profiles, objects
in ScanObjectNN are occluded at different levels and dis-
turbed with background noise, which makes them more
challenging for accurate recognition.

B. Implementation Details
For ablation studies of projection view numbers, we

adopt different settings for zero-shot and few-shot Point-
CLIP. As the right view is the most important for zero-
shot PointCLIP, we set the 12 views as: front, right, back,
left, top, bottom, upper/lower right diagonal front/back (4
views) and upper left diagonal front/back (2 views). In con-
trast, few-shot PointCLIP achieves higher performance with
left views, so we replace all the “left” settings above into
“right”. For both versions, the view number of M repre-
sents picking the first M views for experiments.

For PointCLIP with inter-view adapter, we fine-tune it
under 1, 2, 4, 8 and 16 shots with batch size 32 and learn-
ing rate 0.01 for 250 epochs. Stochastic Gradient Decent
(SGD) [3] with momentum 0.9 is adopted as the optimizer.
We utilize Smooth Loss [7] following [1] and the cosine
scheduler for learning rate decay. In ModelNet10 and Mod-
elNet40, We apply random scaling and translation for train-
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ing augmentation, but for the challenging ScanObjectNN,
we append jitter and random rotation following [4]. During
training, we freeze CLIP’s both visual and textual encoders,
and only fine-tune the inter-view adapter. For other com-
pared models, we unfreeze all the parameters and adopt data
augmentation and loss functions referring to their papers.

C. Supplementary Ablations
Inter-view Adapter. We adopt the inter-view adapter
with three linear layers: one for global extraction and two
for view-wise adapted features generation. Here, we ex-
plore other architectures of the adapter on 16-shot Point-
CLIP for ModelNet40 in Table 1. Specifically, w/o global
denotes the adapter processing each view separately with-
out interaction, and w/o view-wise simply repeats the global
feature as the adapted feature. The 2-layer adapter removes
the linear layer after the global representation and the pre-
layer moves it before the global extraction. The results indi-
cate the significance of inter-view extraction for the global
feature and the view-wise adapted feature, without which
hurt the performance by -3.33% and -1.27%, respectively.

Architectures of Inter-view Adapter

original w/o global w/o view-wise 2-layer pre-layer

87.20 83.87 85.93 86.48 86.78

Table 1. Ablation studies (%) concerning different architectures of
the inter-view adapter for 16-shot PointCLIP on ModelNet40.

Adapted Features Fusion. The view-wise adapted fea-
ture is generated by the adapter and then blended with the
original CLIP-encoded feature via a residual connection.
On ModelNet40, we evaluate the performance of 16-shot
PointCLIP with different fusion ratios, which denotes the
relative proportion of fusing adapted features. To show the
effect of ratio, we set all view weights the same. As shown
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Figure 1. Visualization of recognition results from PointCLIP, PointNet++ [5] and the model with multi-knowledge ensemble.

in Table 2, different ratios lead to slight performance vari-
ance and the default ratio of 0.6 performs better than oth-
ers. This indicates the comparable contributions between
2D pre-trained knowledge and 3D learned knowledge.

Adapter Fusion Ratios

0.0 0.2 0.4 0.6 0.8 1.0

9.56% 85.78% 85.76% 86.13% 85.85% 85.53%

Table 2. Different fusion ratios of view-wise adapted feature for
16-shot PointCLIP on ModelNet40.

Full Training Set. We also fine-tune PointCLIP on the
full training set of ModelNet40 [8] and present the results
in Table 3. Likewise, we freeze both pre-trained visual
and textual encoders in CLIP and only train the inter-view
adapter. As expected, visual encoders with more parameters
lead to higher accuracy.

Fine-tuning on Full ModelNet40 [8]

RN50 RN101 ViT/32 ViT/16 RN.×4 RN.×16

91.09% 91.69% 90.70% 91.76% 91.93% 92.01%

Table 3. Fine-tuning PointCLIP on full training set of ModelNet40
with different visual encoders.

Fine-tuning Settings. Under full training set of Model-
Net40 [8], we further fine-tune different modules of Point-
CLIP in Table 4, where we adopt ResNet-101 [2] as the vi-
sual encoder. The fine-tuning without the inter-view adapter
represents unfreezing the visual or textual encoder upon
the zero-shot PointCLIP. As presented, unfreezing the tex-
tual encoder normally hurts the performance, and only fine-
tuning the inter-view adapter obtains the best accuracy.



Visual Encoder Textual Encoder Inter-view Adapter Acc.

! - - 91.01
- ! - 73.89
- - ! 91.69
! - ! 90.99
- ! ! 88.82

Table 4. Ablations of PointCLIP fine-tuning different modules.
!denotes fine-tuning and - denotes freezing.

D. Visualization
We visualize some cases of multi-knowledge ensemble

of PointCLIP and PointNet++ [5] to reveal the effective-
ness of the enhancement. As shown in Figure 1, when
two models both predict correctly for the first four sam-
ples, the ensemble model would preserve the prediction. As
for samples in the other two rows, PointCLIP and Point-
Net++ show the complementary properties that the ensem-
ble model would rectify one of their wrong predictions.
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