
1. Appendix

1.1. Cost of Elementwise Operations

It is usually assumed that elementwise operations such
as residual connections, BatchNorm layers, or DPReLU ac-
tivation functions have negligible computation compared
to Conv or linear layers. These elementwise layers are
therefore excluded when calculating the compute cost with
CPU64 or ACE. BNNs in the literature also adopted the
same assumption [?, ?, ?].

However, the elementwise operations gradually become
the cost bottleneck after the expensive Conv and linear lay-
ers are either binarized or quantized to ultra-low precision.
Using PokeBNN-1.0x as a case study, we show the break-
down of the operation count in the table below.

There are 81.9 million elementwise additions and 38.4
million elementwise multiplications in PokeBNN-1.0x.
These operations remain unquantized and are executed in
bfloat16. If there is no optimization, these operations will
have 30.8×109 ACE and will completely dominate the cost.
Prior BNN works also suffer from the same issue [?, ?, ?].
Described as follows, there are several ways in which we
can alleviate the problem.

Use integer arithmetic for additions. Most of the ele-
mentwise operations are additions. According to the energy
numbers in Table 1 in the paper, additions in float16 are
about 4 to 5 more expensive than additions in int32, and
13 to 23 times more expensive than int8. It would be chal-
lenging to represent all the ops in int8 without an automatic
calibration algorithm, but int16 should have wide enough
dynamic range.

Assume that no activation needs an absolute value bigger
than 27, add the following operation can be applied on all
the operations in the network:

Q16(x) = clip(round(x · 28) · 2−8,−(27 − 1), (27 − 1))

This implements a low-cost fixed-point arithmetic that has
int16 additions. Only 16 adders are needed so the ACE met-
ric is 16 for each addition.

Use narrow integer arithmetic for multiplication.
High precision integer multiplication is costly. All of the
multiplications in PokeBNN inference are fixed-point. The
multiplication constants in avg_ch are 0.5 or 0.25, these
can be implemented by shifts with negligible energy cost.
In avg_pool_3x3 the constant is 1

9 , but we could ap-
proximate it by 1

8 and use a shift as well. It is the mul-
tiplications in BatchNorm, DPReLU and the final multi-
plication in SE_4b that represent the biggest challenge.
In this appendix we assume that we assume that their 8-
bit fixed-point representation of the fixed multipliers is ac-
curate enough. The cost of int16 multiplied by int8 is
ACE=16 · 8 = 128.

Operation fusion. All the unquantized operations in
our network are linear as they consist of multiplications
and additions. The one exception is the slope selection in
DPReLU. Nevertheless the size of the channelwise learn-
able parameters in DPReLU and BatchNorm is small. It is
only a vector of length of the number of channels as they are
shared between the spatial pixels. The same holds for the
output of the SE layer. One can check that the consecutive
operations of DPReLU and SE output multiplications can
be always fused with the neighboring BatchNorm as all of
them are affine functions. Only a separate addition for slope
selection needs to be preserved. Both scaling multiplication
in the quantization operators can be fused as well. The cost
of fused operations can be ignored for the inference. In the
case of fusion of SE final multiplication scaling, computa-
tion of the coefficients for final affine transformation has to
be dynamic. Nevertheless, the cost of it is also negligible
as it is shared between pixels and proportional only to the
number of channels.

Smaller Pooling Kernel. Current average pooling layers
for spatial downsampling uses 3×3 kernels. One could also
replace avg_pool_3x3 with avg_pool_2x2, a trans-
formation similar to the first layer in PokeInit. It reduces
the cost by 55%.

ACE estimation for pointwise operations. While the
additions can be fused as described above, even without that
the cost of them will be relatively low ACE ≤ 81.9 · 106 ·
16 ≈ 1.3 · 109.

Importantly, all the multiplications not in BatchNorms
can be either replaced by shifting or fused into BatchNorm.
The cost of the MULs in BatchNorm is ACE = 17.9 · 106 ·
128 = 2.3 · 109.

Overall the cost of elementwise operations is estimated
to be ACE = 3.6 · 109. While this is less than the cost
of convolutions and the final classifier in PokeBNN-1.0x
(ACE = 4.2 · 109), it is not negligible and should be taken
into account in future research.

1.2. ACE limitations

Memory reads and writes are potentially major en-
ergy sinks. The energy cost of writing or reading data to
DRAM is 50-150 higher than to SRAM, but in case of the
inference both model and activations usually can (or have
to) fit in SRAM. We also note that if systolic array ma-
trix multiplication circuit is big enough, for an inference,
all inputs to the matmuls and convolutions have to be read
exactly once. ACE does not estimate the cost of SRAM
reads and writes into account. Also, as discussed in [?] the
SRAM energy cost is not reducing as fast as the arithmetic
cost between 45 nm to 7 nm chip manufacture process, thus
making it incompatible with the goals of ACE.

Data movement are potentially major energy sinks.
Energy-intensive chips are limited to 2D due to a need of



Layer Type ADDs (×106) MULs (×106)
BatchNorm addition 17.9 17.9

DPReLU 3× 9.1 9.1

ReshapeAdd: avg_ch 5.4 1.7

ReshapeAdd: avg_pool_3x3 7.9 0.87

ReshapeAdd: residual addition (local + block) 8.8 + 5.5 0

SE 4b: SpatialMean 8.9 < 0.01

SE 4b: activation functions < 0.01 < 0.01

SE 4b: final multiplication 0 8.8

Global pooling before classifier 0.1 < 0.01

Sum 81.9 38.4

Number of elementwise operations from unquantized layers.

high area-to-volume ratio for the sake of power delivery
and heat removal. Inability to co-locate various circuits
and memories may force existence of long wires, so called
buses. This problem is not fundamental as tiled chip de-
signs are being explored and well suited for 2D (also 3D
and higher) image processing as each tile may be responsi-
ble for part of image and communicate only with its neigh-
bors. Also energy use of chip’s clock-tree can be thought of
a variant of the same problem. Taking such design consid-
erations into account is far beyond the scope of ACE.

ACE does not take into account ”vector” operations.
Activations, multiplication in BN, residual additions, bound
scaling and clipping. All these operations are not taken into
account neither by our application of ACE nor by most of
the papers using CPU64. The analysis on the these opera-
tions is described in Appendix: Cost of Elementwise Oper-
ations.

Memory layout and padding. DNN operations that re-
shape or pad large patches of data are not modeled for en-
ergy. Networks like ShuffleNet[cite] might not be modeled
well enough by ACE.

Analog and in-memory computing. It is unclear to the
authors how to model hardware and networks that perform
arithmetic operations using analog, in-memory computing
circuits.


	. Appendix
	. Cost of Elementwise Operations
	. ACE limitations


