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1. Introduction
The supplementary materials consist of implementation

details of neural module methods, ablation studies, and sup-
plementary qualitative results:

1. we present the implementation details of NSM [2] and
XNM [4] in Section 2;

2. we present ablation studies about the selection of hy-
perparameters for NSM [2] and XNM [4] models in
Section 3;

3. we demonstrate additional qualitative examples in Sec-
tion 4.

2. Implementation details of NSM and XNM
One of the key differences between conventional XNM

methods and ours lies in the attention mechanism. In the
main paper, we have discussed the memory-augmented at-
tention that jointly allocates attention to the visual knowl-
edge and external knowledge with information sharing. In
this section, we present additional details about how the at-
tention mechanisms of XNM and NSM models are adapted
to work with our method.

Specifically, we concatenate the pair of queries qvt and
qet into qt = [qvt , q

e
t ], which is used as the input to the

neural modules. Similarly, the intermediate attention out-
put from the neural modules is also defined as the combi-
nation of two attention vectors (i.e., αt = [αv

t , α
e
t ]). The

augmented attention (i.e., α̂t = [α̂v
t , α̂

e
t ]) is then used as the

input of the next neural modules in the sequence of execu-
tion. Under this design, each neural module of NSM and
XNM can jointly process a pair of input queries and output
a pair of attention vectors each corresponding to one knowl-
edge source. Below we introduce how the two methods are
adapted to process the augmented queries and attention.
Adaptation of NSM. With the input query qt and the aug-
mented attention α̂t, we adopt the attention update mecha-

nism of NSM [2] to compute the attention of the next rea-
soning step αt+1. First, following NSM [2], to determine
how attention should be shifted, we compute the relevance
scores of each graph node (denoted as γa) and edge (de-
noted as γb) to the input query. Note that the difference
between our implementation and the original NSM method
is that we compute the relevance scores on both the vi-
sual scene graph and the external knowledge graph. We
then compute (1) the influx attention αin

t+1 of each node
as a combination of the input attention α̂t in the neighbor-
ing nodes, using the edge relevance scores γb as the com-
bination weights, and (2) the remaining attention αremain

t+1

from the node relevance scores γa. Each of the attention
vector is composed of two softmax-normalized components
within the visual knowledge graph and the external knowl-
edge graph independently. Finally, they are linearly com-
bined to generate the output attention αt+1.
Adaptation of XNM. We implement the XNM method fol-
lowing its original design [4]. Specifically, Tab. 1 presents
the list of XNM neural modules and their implementation
details. These modules are grouped into three categories:
attention, logic, and output. Attention modules take pre-
vious attention αt, node features ht or query qt as the in-
put and compute the output attention αt+1. In our work,
to jointly reason about the visual knowledge and external
knowledge, we represent ht as the concatenation of node
features ht = [hv

t , h
e
t ] from both sources. Logic modules

shift attention by conducting logical operations on the cur-
rent attention αt or two previously computed attention vec-
tors α1

t and α2
t . The output modules predict the answers

by performing feature comparison, measuring the amount
of attention, or applying the query to the attended features.

3. Ablation analysis of hyperparameters
We conduct ablation analyses to evaluate the effects of

different hyperparameters. The model performance is eval-
uated on the OK-VQA [3]. Overall, the optimal hyperpa-
rameter settings for XNM are the same as those for the NSM



Modules Category Operation

Attend Attention αt = softmax(MLP(ht, qt))
Relate Attention αt, ht, qt −→ αt+1

Or Logic αt+1 = min(α1
t , α

2
t )

And Logic αt+1 = max(α1
t , α

2
t )

Not Logic αt+1 = 1− αt

Compare Output hout = MLP(h1
t − h2

t )
Exist Output hout = MLP(sum(αt))

Describe Output hout = softmax(MLP(qt))W (αt ◦ ht)

Table 1. An overview of XNM neural modules. MLP(·) indicates
a multi-layer perceptron consisting of several fully-connected and
ReLU layers, and W is a matrix of learnable weights. The pa-
rameters αt, ht, and qt indicate attention, features, and query. α1

t ,
α2
t are two previously computed attention vectors that will be pro-

cessed with logical operations.

model, which is ηv = 0.6, ηe = 0.8, and Ld = 3. We report
detailed discussions about these hyperparameters below.
Hyperparameters ηv and ηe. The hyperparameters ηv

and ηe are the weights that determine how much the agents
should be rewarded for selecting knowledge-related queries.
Higher values enforce the generated queries of both agents
being more different from the question but more similar to
the visual or external sources, respectively. Tab. 2 and Tab. 3
present the results of our method with different combina-
tions of ηv and ηe. Our method performs the best when
ηv = 0.6 and ηe = 0.8. These weights are high enough
for the two sets of augmented queries to complement each
other but also remain relevant to the question.

H
HHHHηv

ηe

0 0.2 0.4 0.6 0.8 1.0

0 20.59 20.78 20.84 21.02 21.46 21.31
0.2 21.38 21.59 21.89 23.05 23.52 23.36
0.4 21.46 22.31 22.90 23.64 23.25 23.12
0.6 21.93 24.64 25.22 25.94 26.52 26.17
0.8 22.37 23.39 24.25 25.73 25.41 25.55
1.0 22.24 22.76 23.41 23.20 22.17 22.39

Table 2. Hyperparameter selection of ηv and ηe on the OK-VQA
dataset, based on the XNM model. Best results are highlighted in
bold.

Hyperparameter Ld. The maximum distance Ld is a key
hyperparameter to control the inclusion of visual and ex-
ternal concepts into the dictionaries. Though Ld needs to
be sufficiently large for the dictionaries to include the most
relevant concepts as query candidates, a overlarge Ld may
also result in the inclusion of less relevant concepts. Tab. 4
and Tab. 5 demonstrate the model performance with respect

HHH
HHηv
ηe

0 0.2 0.4 0.6 0.8 1.0

0 21.97 22.57 23.09 23.59 23.72 23.79
0.2 23.92 23.74 24.15 25.32 25.87 25.49
0.4 22.49 22.57 24.19 24.78 26.14 26.62
0.6 22.26 24.73 24.78 28.64 29.24 28.31
0.8 22.41 24.50 24.92 26.28 27.73 27.48
1.0 22.35 23.92 25.11 26.86 27.51 27.89

Table 3. Hyperparameter selection of ηv and ηe on the OK-VQA
dataset, based on the NSM model. Best results are highlighted in
bold.

Ld 1 2 3 4 5

Accuracy 24.89 25.64 26.52 26.27 26.21

Table 4. Hyperparameter selection of Ld on the OK-VQA dataset,
based on the XNM model. Best results are highlighted in bold.

Ld 1 2 3 4 5

Accuracy 27.29 28.52 29.24 28.67 27.51

Table 5. Hyperparameter selection of Ld on the OK-VQA dataset,
based on the NSM model. Best results are highlighted in bold.

to different choices of Ld.

4. Supplementary qualitative results
We demonstrate supplementary qualitative examples in

Fig. 1 to show the effectiveness and generalizability of our
method. As shown in Fig. 1a–e, the knowledge-augmented
queries guide attention to concepts that are more relevant to
the answers (e.g., vegetable and topping in Fig. 1a, recre-
ation and dog in Fig. 1b, plant and tiny in Fig. 1c, car-
riage and transport in Fig. 1d, dress in Fig. 1e). With these
queries, the attention of the model can be better allocated
to the corresponding answers. In contrast, the state-of-the-
art AN [3] and KI-Net [5] are more vulnerable to external
knowledge biases (e.g., salad is more probable than pizza to
be present together with vegetable). These examples show
that our method can better locate the relevant knowledge for
answer prediction.

Fig. 1f demonstrates a failure case of our model. It sug-
gests that when the reasoning considers logical operations
(e.g., without), allocating attention solely based on seman-
tic similarities can be problematic and may lead to incor-
rect answers (e.g., man instead of camel). Such issue is
pervasive among many state-of-the-art VQA models [1, 2],
as well as the compared AN [3] and KI-Net [5] methods.



Figure 1. Additional qualitative examples of our method. Each example shows the input image, question, ground-truth (GT) answer and
model predictions, base queries (B-Q) and the queries augmented with visual knowledge (V-Q) and external knowledge (E-Q), followed
by the attended visual and external knowledge. Highlighted knowledge (blue) indicates the FVQA supporting fact of the question.

Therefore, future extensions of our method may consider
explicitly representing the logical operations in the neural

modules and knowledge graphs to tackle the issue.
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