
Supplementary Material for
Representation Compensation Networks for Continual Semantic Segmentation

Chang-Bin Zhang 1 Jia-Wen Xiao 1 Xialei Liu 1 Ying-Cong Chen 2 Ming-Ming Cheng 1

1 TMCC, CS, Nankai University 2 HKUST

1. Overview

In Sec. 2, We firstly conduct experiments on classifica-
tion [4,7] in continual learning. We describe the details of our
method in Sec. 3, where we provide the pseudo-code for our
proposed Pooled Cube Distillation. Then we discuss some of
the characters in our method in Sec. 4, including the robust-
ness of our method against different class orders, the impact
of hyper-parameters ,and the ablation study about pooled
knowledge distillation. More importantly, we explore our
proposed representation compensation mechanism in Sec. 5.
Lastly, we display more qualitative results in Sec. 6.

2. Continual Learning on Classification.

Our proposed representation compensation module can
be easily integrated with many existing continual learning
methods [1, 4, 7]. We conducted experiments integrating our
representation compensation mechanism and two existing
methods, EEIL [7] and PODNet [4]. We follow PODNet [4]
and report Top-1 accuracy on ImageNet-Subset (100 classes
in total) with 50 classes as the first task and the rest are
equally divided into five tasks (step 1 - 5). As shown in
Tab. 1, For both EEIL and PODNet baselines, our method
improves over them by about 2% in average accuracy, re-
spectively.

Method step 1 step 2 step 3 step 4 step 5 Avg Gain
EEIL [7] 74.27 70.03 68.45 64.62 61.62

+ RC 77.23 72.06 70.10 66.89 63.82 2.22 ↑
PODNet [4] 81.20 72.74 66.15 61.47 57.44

+ RC 81.90 74.77 70.05 64.22 60.04 2.40 ↑

Table 1. Experiments in Continual Classification. All experiments
are conducted on the ImageNet-100.

3. Reproducibility

In this section, we describe more details about the loss
functions. Then we provide the pseudo-code for our pro-
posed pooled cube distillation.

Algorithm 1 Pseudo-code of Pooled Cube Distillation in a
PyTorch-like style.

f_old: list of features from different stages of the
old model

f_new: list of features from different stages of the
new model

gamma: the hyper-parameters for the loss function
loss_spatial: Pooled Cube distillation loss on

spatial dimension
loss_channel: Pooled Cube distillation loss on

channel dimension

def pooledCube_KD(f_old, f_new):
define the average pooling size
kernel_spatial = [4,8,12,16,20,24]
kernel_channel = [3]

do PCD for different pairs of features
for i, (x_old, x_new) in zip(f_old, f_new):

#x_old: NxCxHxW
PCD_old = hadamard_product(x_old, x_old)
#x_new: NxCxHxW
PCD_new = hadamard_product(x_new, x_new)

loss_spatial = 0

multi-scale pooled cube distillation on
spatial dimension

for kernel in kernel_spatial:
PCD_old = AvgPool2d(PCD_old, kernel)
PCD_new = AvgPool2d(PCD_new, kernel)
PCD_gap = (PCD_old - PCD_new).view(N,-1)
PCD_gap = hadamard_product(PCD_gap, PCD_gap)

loss_spatial += sqrt(PCD_gap.sum())

loss_spatial /= len(kernel_spatial)

pooled cube distillation on channel dimension
PCD_old = x_old.permute(0,2,1,3)
PCD_new = x_new.permute(0,2,1,3)

loss_channel = 0

for kernel in kernel_channel:
PCD_old = AvgPool2d(PCD_old, (kernel, 1))
PCD_new = AvgPool2d(PCD_new, (kernel, 1))
PCD_gap = (PCD_old - PCD_new).view(N,-1)
PCD_gap = hadamard_product(PCD_gap, PCD_gap)

loss_channel += sqrt(PCD_gap.sum())

loss_channel /= len(kernel_channel)

compute the total loss
loss = (loss_channel + loss_spatial) * gamma

return loss

Objective. In the scenario of continual class semantic seg-
mentation, to save the labeling cost, only the new classes

1

are labeled in the newly added training data, and the old
classes are treated as the background class. Thus, this brings
a great challenge in continual class semantic segmentation,
semantic shift [2]. To solve this issue, we also apply the loss
functions Lunce and Lunkd proposed by [2] as [2, 6] in our
pipeline as the baseline. We refer to [2] for more details.

Specifically, let Ct denotes the classes learned in step t.
Thus, for the example (x, y), the objective for learning new
classes can be written as

Lunce = − 1

|I|
∑
i∈I

log p̂t(i, yi), (1)

where yi ∈ {0, Ct} denotes the ground-truth in the label for
the i-th pixel. And p̂t(i) is modified from the predictions
of current model pt(i), considering all old classes are back-
ground. The predicted scores for the old classes are summed
to the backgroud class. The model is also supposed to main-
tain discrimination for old classes. Thus, the knowledge
distillation objective can be denoted as

Lunkd = − 1

|I|
∑
k∈C

∑
i∈I

pt−1(i, k) log p̂t(i, k), (2)

where pt−1 is the prediction of the old model, and C denotes
all old classes and the background class. The p̂t(i) is modi-
fied by predicted scores pt(i) of the current model. In this
objective, all new classes are treated as the background class,
and their predicted scores are summed to the background
class.

In this work, the overall objective can be denoted as:

L = Lunce + λLunkd ·

√
||C||
||Ct||

+ γ(Lskd + Lckd), (3)

where Lskd and Lckd denote the distillation loss function on
spatial and channel dimensions, respectively. The λ, γ are
hyper-parameters to balance the different objectives. And
the ||C|| and ||Ct|| denote the number of classes of all and
current, respectively. In our experiments, we set the λ as 100,
and the γ as 0.01. We discuss the impact of hyper-parameters
in Sec. 4.2.

Pooled Cube Distillation. To further alleviate catastrophic
forgetting, we design pooled cube distillation strategy on
both spatial and channel dimensions. We display the pseudo-
code in Alg. 1.

4. Discussion
4.1. Robustness to Class Order

To verify the impact of different class orders, we run
different methods on five different orders on the 15-1 over-
lapped setting, which includes the ascending order and four

random orders. The four random orders are provided by the
code of PLOP [3]. Experimental results are shown in Tab. 2.
We can observe that ILT [5], MiB [2], and SDR [6] are
less stable to different orders with large variance. PLOP [3]
improves over these methods by using multi-scale feature
distillations. Thanks to the proposed mechanisms, Ours is
much more robust to different orders and also obtains the
best performance in terms of mIoU. The five orders are de-
fined as:

A : {[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16], [17], [18], [19], [20]},
B : {[0, 12, 9, 20, 7, 15, 8, 14, 16, 5, 19, 4, 1, 13, 2, 11], [17], [3], [6], [18], [10]},
C : {[0, 13, 19, 15, 17, 9, 8, 5, 20, 4, 3, 10, 11, 18, 16, 7], [12], [14], [6], [1], [2]}
D : {[0, 15, 3, 2, 12, 14, 18, 20, 16, 11, 1, 19, 8, 10, 7, 17], [6], [5], [13], [9], [4]},
E : {[0, 7, 5, 3, 9, 13, 12, 14, 19, 10, 2, 1, 4, 16, 8, 17], [15], [18], [6], [11], [20]}.

(4)

4.2. Impact of Hyper-parameters

As described in Sec. 3, there are two hyper-parameters
λ and γ in our objective. We study the impact of these
hyper-parameters in Tab. 3. Our method achieves the best
performances when γ = 0.005 and γ = 0.01, with the
selected γ, it can perform well within a relatively large range
of λ from 20 to 200. In our experiments, considering lambda
is set as 100 in [2], thus we apply the same hyper-parameters
as [2]. We set λ as 100 and γ as 0.01.

4.3. Ablation study about knowledge distillation

Impact of different pooling kernel sizes. In the scenario
of continual semantic segmentation, the pooling operation
plays a key role in the distillation mechanism. In our distil-
lation mechanism, we use the multi-scale average pooling
with kernel size in M = {4, 8, 12, 16, 20, 24}. We study
the impact of different pooling kernel sizes in Tab. 4. Ex-
perimental results demonstrate that if only one window size
is used when the pooling window size is too small or too
larger, the performance will be worse. We analyze that if the
pooling window size is relatively small, when aggregating
information for the current pixel, sufficient information of
neighbors is not able to be considered, so the negative impact
of noise cannot be effectively suppressed. When the pooling
window size is relatively large, aggregating information for
the current pixel can bring unrelated noise to the current
pixel, therefore the performance is worse as well. When
we combine multi-scale window sizes, the mIoU is stable at
very high performance, therefore we use all scales as shown
in Tab. 4 in stead of choosing the optimal scales.

Distillation on different layers. We explore the impact of
our proposed pooled cube distillation on different intermedi-
ate layers. Experimental results are shown in Tab. 5, which
demonstrates that distillation on all layers outperforms the
baseline without distillation by 21.7% in terms of mIoU. It

Method Task overlapped disjoint

ILT [5]

A 9.20 7.90
B 16.74 20.65
C 12.16 6.37
D 11.49 10.85
E 15.60 13.77

13.04 ± 2.76 11.91±5.05

MiB [2]

A 32.20 39.9
B 20.15 23.68
C 36.05 34.25
D 38.91 40.55
E 53.73 48.01

36.21±10.8 37.28±8.08

SDR [6]

A 44.39 45.68
B 40.65 6.60
C 46.36 34.31
D 44.61 37.04
E 41.72 45.15

43.55 ± 2.07 33.76 ± 14.29

PLOP [3]

A 54.60 46.50
B 47.43 41.67
C 53.43 48.00
D 58.25 46.81
E 47.20 37.86

52.18 ± 4.28 44.17 ± 3.82

Ours

A 59.40 54.70
B 54.05 53.26
C 55.63 49.53
D 55.29 55.53
E 63.19 56.07

57.51 ± 3.35 53.82 ± 2.34

Table 2. The mIoU(%) of the final step. We conduct experiments
on different class orders on 15-1 overlapped. The purple denotes
the mean mIoU(%) and standard variance over five different class
orders.

λ
γ

0.0001 0.001 0.005 0.01 0.05 0.1

1 35.4 39.8 46.3 49.3 46.5 42.8
10 44.3 49.3 52.1 51.0 46.5 44.7
20 49.0 56.9 57.6 56.1 50.0 47.8
50 48.5 57.4 59.7 59.1 53.6 50.6
100 42.9 55.0 59.4 59.4 55.5 50.8
150 52.6 52.6 58.2 58.9 55.4 50.7
200 50.0 50.0 57.8 58.3 55.1 51.0

Table 3. Impact of different hyper-parameters. All experiments are
conducted on the 15-1 overlapped setting on PASCAL VOC 2012
dataset. We select the λ as 100 and γ as 0.01 in our experiments.

4 8 12 16 20 24 mIoU(%)
✓ 55.1

✓ 56.2
✓ 56.2

✓ 55.4
✓ 54.7

✓ 53.7
✓ ✓ 55.8
✓ ✓ ✓ 56.1
✓ ✓ ✓ ✓ 56.2
✓ ✓ ✓ ✓ ✓ 56.1
✓ ✓ ✓ ✓ ✓ ✓ 56.1

Table 4. Impact of different average pooling kernel sizes in our
proposed pooled cube distillation mechanism. All experiments
are conducted on 15-1 overlapped on PASCAL VOC 2012 dataset
using PLOP framework.

layer 1 layer 2 layer 3 layer 4 decoder 15-1
36.1

✓ 33.6
✓ 34.0

✓ 39.7
✓ 47.2

✓ 54.1
✓ ✓ 32.8
✓ ✓ ✓ 34.0
✓ ✓ ✓ ✓ 46.6

✓ ✓ 55.3
✓ ✓ ✓ 56.6

✓ ✓ ✓ ✓ 57.4
✓ ✓ ✓ ✓ ✓ 57.8

Table 5. Ablation study about distillation mechanism at different
stages. All experiments are conducted on the 15-1 overlapped
setting on PASCAL VOC 2012 without RC module.

is interesting that distillation on the decoder gives the largest
boost compared to other layers, which may be due to the
high-level semantic information contained in the decoder.
Thanks to deep supervision, the effect of gradient vanish-
ing can be alleviated, and fusing distillation from all layers
can further improve the performance. Therefore we use
distillation on all layers in our work.

5. Exploring Representation Compensation

Previously, we claimed that the left branch has the
function of remembering the old knowledge, playing a
role of great significance in preventing catastrophic for-
getting. In Fig. 2, we let the left branch account for
99.95%, 75%, 50%, 25%, 0.05% during fusion of training
process to observe the model’s ability to remember old
knowledge, i.e., the performance over old classes. In order to
ensure the fairness of the experiment and easy observation,

Image MiB [2] PLOP [3] SDR [6] Ours GT

Figure 1. Visualization results for different methods.

we only added RC-module based on Fine-tuning. And we
set the learning rate as 0.0001 for training from step 1 to step
5. As shown in Fig. 2, with the weight increasing, the model
gradually enhances the memory of old knowledge, indicating
that the frozen branch can preserve the old knowledge. Thus,
our training process can benefit from this characteristic.

6. More Qualitative Results
We display some visualization results in Fig. 1.

7. Future Work
In our current RC-module, the feature aggregation of two

branches is obtained by linear weighting. The weights indi-
cate the importance of the two branches. In our method, we
simply set the weights of two branches to 0.5. We believe
that it can achieve better performance by designing the fea-

ture aggregation method carefully. For example, in future
work, we could explore learnable weights for two branches.

References

[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang,
Hyojun Kim, and Taesup Moon. Ss-il: Separated softmax
for incremental learning. In Int. Conf. Comput. Vis., pages
844–853, 2021. 1

[2] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo,
Elisa Ricci, and Barbara Caputo. Modeling the background for
incremental learning in semantic segmentation. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 9233–9242, 2020. 2, 3, 4

[3] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu
Cord. Plop: Learning without forgetting for continual semantic
segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,
2021. 2, 3, 4

1 2 3 4 5
step

30

35

40

45

50

55

60

65

70

m
Io

U(
%

)

99.95%
75%
50%
25%
0.05%

Figure 2. The mIoU(%) for old classes. We set different weighting
parameters (99.95%, 75%, 50%, 25%, 0.05%) for the frozen branch
during aggregating features from two branches. As the weight
increases, the model presents a tendency to keep the memory of
old knowledge. All experiments are conducted on 15-1 overlapped
setting on PASCAL VOC 2012 dataset.

[4] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distillation
for small-tasks incremental learning. In Eur. Conf. Comput.
Vis., volume 12365, pages 86–102, 2020. 1

[5] Umberto Michieli and Pietro Zanuttigh. Incremental learning
techniques for semantic segmentation. In Int. Conf. Comput.
Vis. Worksh., 2019. 2, 3

[6] Umberto Michieli and Pietro Zanuttigh. Continual semantic
segmentation via repulsion-attraction of sparse and disentan-
gled latent representations. In IEEE Conf. Comput. Vis. Pattern
Recog., 2021. 2, 3, 4

[7] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng
Liu, Yandong Guo, and Yun Fu. Large scale incremental
learning. In IEEE Conf. Comput. Vis. Pattern Recog., 2019. 1

