
A. Preliminaries of Transformer
We provide details of the Multi-Head Attention (MSA)

block we mentioned in Section 4.1 for exhaustivity. ViT [4]
inherits the exact qkv self-attention proposed in [9]. The
query, key and value q,k,v ∈ RN×Dh are linearly pro-
jected from the input tokens X ∈ RN×D. Each output to-
ken is a weighted sum over all values v in the sequence,
where the weights Aij are based on the pairwise similarity
between two elements in the sequence with respect to their
qi,kj representations. Self-attention can be formulated as:[

q,k,v
]
= XUqkv Uqkv ∈ RD×3Dh , (1)

A = softmax
(
qk⊤/

√
Dh

)
A ∈ RN×N , (2)

SA(X) = Av. (3)

Multi-head self-attention (MSA) is an extension of the self-
attention where k SA heads are applied to the input se-
quence in parallel. It returns a linear projection of the con-
catenated outputs of the SAs:

MSA(X) =
[
SA1(X), SA2(X), . . . , SAk(X)

]
Umsa, (4)

where Umsa ∈ R(kDh)×D.

B. More Implementation Details

Algorithm 1 Code of “painting” in a PyTorch-like style.

# y: (B, N, K) # The token logits.
# Q: (B, nhw, H, W) # The affinity map Q. n = 9.

# get neighbors for each cell
y = rar(y, "B N K -> B K H W")
nb = im2col(y, kernel_size=3, padding=1)
nb = rar(nb, "B (K n) (H W) -> B H W n K")

# produce output logits map
Q = rar(Q, "B (n h w) H W -> B H W (h w) n)
out = mm(Q, nb)
out = rar(out, "B H W (h w) K -> B (Hh) (Ww) K")

rar: rearrange of dimensions; mm: matrix multiplication.

In Algorithm 1, We provide the psuedo code of the
“painting” process in Section 4.3, i.e., producing the final
logits map from the token logits and the predicted pixel-
token affinity map Q.

C. Extended Ablation Study
In this section, we provide more ablation results as a sup-

plementary of Section 5.3 in the main paper. All the experi-
ments are conducted using half of the training schedule (i.e.,
80k for ADE20K and 40k for Cityscapes) unless otherwise
specified. We report median value of three runs.

Output Strides Thanks to the class-agnostic region de-
sign, we can attain output segmentation of arbitrary reso-
lutions with negligible overheads. Here we investigate the
effect of output stride, which is determined by the h,w men-
tioned in Section 4.2. We report results in Table 1.

arch. h× w stride GFLOPs #params. ADE20K City.

ViT-Ti/16 - - 3.8G 5.7M 38.76 72.02
1× 1 ×16 3.9G 5.8M 39.30 73.11
2× 2 ×8 +0.0G +0.0M 40.23 74.96
4× 4 ×4 +0.0G +0.0M 40.76 75.08
8× 8 ×2 +0.1G +0.1M 40.51 75.31

RegProxy-Ti/16

16× 16 ×1 +0.4G +0.4M 41.01 75.15

ViT-S/16 - - 14.9G 22.0M 45.04 75.39
1× 1 ×16 15.1G 22.2M 45.81 76.71
2× 2 ×8 +0.0G +0.0M 46.91 78.48
4× 4 ×4 +0.1G +0.1M 47.18 78.71
8× 8 ×2 +0.2G +0.2M 47.20 78.37

RegProxy-S/16

16× 16 ×1 +0.8G +0.9M 47.34 78.81

1× 1 ×32 16.2G 36.3M 45.40 74.66
2× 2 ×16 +0.0G +0.0M 46.97 77.56
4× 4 ×8 +0.1G +0.1M 48.11 78.18
8× 8 ×4 +0.2G +0.2M 47.79 78.05

RegProxy-
R26+S/32

16× 16 ×2 +0.3G +0.9M 47.42 78.34

Table 1. Comparison of different output strides. We report sin-
gle scale results on ADE20K and Cityscapes. The GFLOPs are
evaluated on 512×512 crops. In gray are the linear baselines. We
bold the top-2 entries for each model.

Despite the almost free cost of attaining high resolution
results, it is not always the best choice to set a large (h,w).
Part of the reason is that the performance upper bound tends
to saturate as the prediction gets finer. We also hypothesize
that a too large (h,w) makes the model harder to train. In
the main paper, we report results with (h,w) set to (4, 4)
to align the output stride with common segmentation mod-
els [2, 10]. Still, increasing (h,w) is a good choice which
generally improves the performance with negligible cost.

The 3× 3 Conv The 3× 3 depth-wise convolution in the
affinity head was initially introduced to fuse local informa-
tion for region geometrics prediction. We investigate its ef-
fect in Table 2. We find it improves the performance on
ADE20K, while has no significant effect on Cityscapes. We
also notice a normal convolution (with group of 1) yields
similar results with the depth-wise one. To sum up, the
3 × 3 depth-wise convolution in the affinity head improves
the performance, however it is not a determinative compo-
nent. Use early transformer layers alone can also achieve
considerable performances. This is reasonable since it is
only used for region geometrics prediction, while is not in-
volved in the actual context modeling.

Pre-training We study the effect of different ViT pre-
trainings. We initialize our model using three settings:
1) Random initialization; 2) DeiT [8] pre-training on
ImageNet-1k; 3) AugReg [6] pre-training on ImageNet-
21k following recent Segmenter [7]. On RegProxy-S/16,
we also report results using DINO [1] self-supervised pre-
training. Table 3 summarizes the results. Similar to many
recent works [5,7,11], RegProxy benefits from pre-training



arch. 3× 3 conv. dpt.† GFLOPs #params. ADE20K City.

RegProxy-Ti/16
3.9G 5.7M 40.01 75.04

✓ +0.3G +0.4M 40.72 74.96
✓ ✓ +0.0G +0.1M 40.76 75.08

RegProxy-S/16
15.0G 22.1M 46.78 78.63

✓ +1.3G +1.3M 46.98 78.68
✓ ✓ +0.1G +0.2M 47.18 78.71

† Whether to use depth-wise convolution [3].

Table 2. Effect of the 3× 3 conv.

on large-scale image dataset, while a random initialization
will lead to a dramatic performance drop. However, the
RegProxy model without pre-training still performs bet-
ter than its counterpart reported in [7] (18.83 mIoU vs.
4.42 mIoU on ADE20K, both using ViT-S/16 backbone).

arch. pre-train IN-21k self-sup. ADE20K Cityscapes

none - - 13.96 42.58
DeiT [8] 39.42 74.56RegProxy-Ti/16
ViT [6] ✓ 40.76 75.08

Segmenter [7] none - - 4.42 -
none - - 18.83 49.36
DeiT [8] 45.73 77.69
DINO [1] ✓ 42.21 77.57

RegProxy-S/16

ViT [6] ✓ 47.18 78.71

Table 3. Performances using different pre-training.

D. More Experimental Results
Region Semantics Regularization We find adding ex-
plicit regularization with respect to the semantical homo-
geneity of the learned regions will harm the performance.
The approach is to minimize the L2-norm of the region cat-
egory histogram1:

hist (s) = L1

 ∑
p:s∈Np

qs(p) · onehot (ŷ(p))

 , (5)

where ŷ(p) is the ground truth of pixel p. The results are
shown in Table 4. The models with explicit regularization
perform worse with evidential gaps.

arch. w/ regularization ADE20K Cityscapes

RegProxy-Ti/16
40.76 75.08

✓ 40.66 74.45

RegProxy-S/16
47.18 78.71

✓ 46.38 78.02

Table 4. Effect of explicit regularization on region semantics.

Multi-Level Features As a common technique, using
multi-level feature for token logits prediction also improves
the performance of our RegProxy models. Specifically, we

1This is also used in Section 5.3 to calculate the region entropies.

feed the concatenated tokens features (of layer L/2, 3L/4
and L) to the linear classifier, instead of using the output
tokens of the last layer. The results are reported in Table 5.
However, the improvements are marginal, hence in the main
paper, we report results without features concatenation.

arch. multi-level feat. ADE20K Cityscapes

RegProxy-Ti/16
40.76 75.08

✓ 40.98 75.54

RegProxy-S/16
47.18 78.71

✓ 47.31 78.88

Table 5. Effect of predicting on concatenated token features.

E. More Qualitative Results
Geometrics of the Leaned Regions As a supplementary
of Section 5.3, in Figure 1, we select a few tokens that have
been classified to specific classes, and visualize their cor-
responding regions. Note the region geometrics is class-
agnostic. The heat map is acquired by stacking the prob-
abilistic region descriptions. The learned regions capture
fine-grained boundaries, even for small/thin classes such
as pole and traffic light and complicated classes
such as person. For tokens that locate at the deep inside
of the semantics areas (e.g., No.13 in Figure 1), their corre-
sponding regions are close to Gaussian masks.

Visualization of the Segmentation Results We provide
more qualitative comparisons in Figure 2 and Figure 3.



Figure 1. Geometrics of the leaned class-agnostic regions and its corresponding tokens (marked using white cell) on a Cityscapes
validation image. We identify the token class for better interpretation: 1~3: traffic light; 4: traffic sign; 5~8: pole; 9~10:
person; 11: part of car; 12: surrounding road tokens of a car; 13: inner regions of road.



Figure 2. Qualitative comparison on Cityscapes.



Figure 3. Qualitative comparison on ADE20K.
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