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A. Experiment

A.1. Datasets

Datasets for Object Detection: We consider two adap-
tation tasks Cityscapes [6] → Foggy Cityscapes [19] and
PASCAL VOC [7] → Clipart1k [10]. Cityscapes has
2975 training images and 500 validation images, where the
bounding boxes are generated from pixel-wise annotations
as in [5, 18]. Foggy Cityscapes is derived from Cityscapes
by adding simulated fog. We adopt all training images of
Cityscapes and Foggy cityscapes as source domain and tar-
get domain, and evaluate on all validation images of Foggy
cityscapes. PASCAL VOC [7] is collected from real world,
while Clipart1k [10] is an artistic dataset from CMPlaces [3]
and two image search engines. We adopt PASCAL VOC
2007 (with 2, 501 training images and 2, 510 validation im-
ages) and PASCAL VOC 2012 (with 5, 717 training images
and 5, 823 validation images) as source domain, 1, 000 im-
ages in Clipart1k as target domain and half of Clipart1k as
validation dataset as in [10, 11, 18].

Datasets for Image Classification: We consider
two adaptation tasks VisDA17 [13] and Office-31 [17].
VisDA17 has 152, 409 synthetic image and 55, 400 real
images with 12 categories in common. We consider the
synthetic→real here. Office-31 has images of 31 classes
from Amazon (A), Webcam (W) and DSLR (D) which
have 2817, 795 and 498 images, respectively. Follow-
ing [17, 24], we study six adaptation tasks: A→W, D→W,
W→D, A→D, D→A, and W→A.

Datasets for Semantic Segmentation: We consider two
synthetic-to-real tasks including GTA5 [15] → Cityscapes
[6] and SYNTHIA [16] → Cityscapes. Cityscapes here
has 30 categories with pixel-wise annotations. GTA5 has
24, 966 synthetic images and shares 19 categories with
Cityscapes. For SYNTHIA, we use ‘SYNTHIA-RAND-
CITYSCAPES’ which contains 9, 400 synthetic images and
shares 16 categories with Cityscapes. For the two tasks,
we adopt the 2975 training images in Cityscapes as tar-
get domain and evaluate on the 500 validation images in
Cityscapes.

A.2. Implementation Details

Object Detection: For Cityscapes→ Foggy Cityscapes,
we adopt Faster R-CNN [14] and deformable-DETR [22]
as detection networks and ResNet-50 [8] as backbone as
in [2, 22]. For deformable-DETR, we adopt SGD opti-
mizer [1] with a momentum 0.9 and a weight decay 1e− 4.
The initial learning rate is 2e−4. For Faster R-CNN, we use
SGD optimizer [1] with a momentum 0.9 and a weight de-
cay 5e− 4. The initial learning rate is 0.001. For PASCAL
VOC → Clipart1k, we adopt Faster R-CNN with ResNet-
101 [8] as the detection network as in [10,18]. We use SGD
optimizer [1] with a momentum 0.9, a weight decay 0.0001,
and an initial learning rate 0.001.

Image Classification: Following [17, 24], we use
ResNet-101 and ResNet-50 [8] as backbones for the tasks
VisDA17 and Office-31, respectively. We adopt SGD opti-
mizer [1] with a momentum 0.9 and a weight decay 5e− 4.
The initial learning rate is 1e− 3.

Semantic Segmentation: We use DeepLab-V2 [4] with
ResNet-101 [8] as the segmentation network as in [20, 23].
We use SGD optimizer [1] with a momentum 0.9 and a
weight decay 1e − 4. The initial learning rate is 2.5e − 4
and decayed by a polynomial policy of power 0.9 [4].

For all visual recognition tasks, we set the number of
FCs N at 32. The weight factors λc and λs (in Eq.8 in main
text) are fixed at 0.1.

B. Discussion
B.1. Number of STs

We studied the effect of the number of STs by increasing
the number of ST from 1 to 4 over the UDA-based object
detection task Cityscapes → Foggy cityscapes. Since the
module MSL can not work with one ST, we remove MSL
module in all experiments for a fair comparison. As shown
in Table 1, we can observe that employing two STs per-
forms clearly better than employing one ST. However, when
the number of ST continues to increase, the performance of
model doesn’t improve further, demonstrating that the do-
main adaptation saturates with more STs. Meanwhile, more
STs will complicate the network design and introduce more
parameters.
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Figure 1. Visualization of ST-generated images over UDA-based object detection task PASCAL VOC → Clipart1k: For paired images of
the two domains shown in rows 1 and 4 (denoted by ‘Raw’), the ST1 and ST2 generated images (denoted by ‘ST1’ and ‘ST2’) in rows 2-3
and 5-6 have clearly lower inter-domain discrepancy which facilitates the inter-domain adaptation greatly.

B.2. Comparison with Existing Spectrum-based
Techniques

We compared SUDA with two existing spectrum-based
UDA techniques [9, 21]. RDA [9] tackles UDA problem by
mitigating the overfitting problem. Specifically, it employs
Fourier adversarial attacking to prevent over minimization
of supervised and unsupervised UDA losses. FDA [21]
tackles UDA problem by mitigating inter-domain discrep-
ancy in an unlearnable manner, where it swaps certain pre-

defined FCs of source and target samples to generate target-
style source images. As a comparison, the proposed SUDA
minimizes inter-domain discrepancy by identifying and en-
hancing domain-invariant FCs in a learnable way. In ad-
dition, SUDA introduces multi-view spectral learning for
capturing more diverse target representations. SUDA thus
addresses the UDA challenges from very different perspec-
tives which is clearly complementary to the two spectrum-
based works. Additionally, FDA conducted three rounds
of self-training while SUDA just conducted one round,
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Figure 2. Visualization of ST-generated images over UDA-based object detection task Cityscapes → Foggy cityscapes: For paired images
of the two domains shown in rows 1 and 4 (denoted by ‘Raw’), the ST1 and ST2 generated images (denoted by ‘ST1’ and ‘ST2’) in rows
2-3 and 5-6 have clearly lower inter-domain discrepancy which facilitates the inter-domain adaptation greatly.

Number of ST modules

Method 1 2 3 4
SUDA (w/o MSL) 40.6 41.8 41.6 41.7

Table 1. The number of ST affects UDA-based object detection
task Cityscapes → Foggy cityscapes.

where multi-round self-training usually boosts performance
in UDA tasks. Here we tested SUDA and FDA under sim-
ilar self-training settings and the table below shows exper-
imental results on GTA-to-Cityscapes. As table 2 shows,
SUDA outperforms FDA consistently under similar self-
training settings.

B.3. Comparison with Other Image Translation
Method

We performed new experiments by replacing the pro-
posed ST with CycleGAN [74] (widely used for image

Method 1-round 3-round

FDA 46.8 50.5
SUDA 48.8 51.6

Table 2. Comparison with FDA [21] under similar training settings
on UDA-based semantic segmentation task GTA5 → Cityscapes.

translation and style transfer) with the rest components
unchanged. Table 3 shows experimental results on task
Cityscapes→ Foggy cityscapes. It can be seen that ST out-
performs CycleGAN clearly as it disentangles image sig-
nals to different frequency bands and aligns them across
domains separately.

B.4. Parameter Studies

Parameter N : Parameter N decides the number of the
decomposed frequency components for each input image.
We studied the sensitivity of N by changing it from 16 to



Cycle-GAN ST

mAP 37.8 42.8

Table 3. Comparison with other image translation method under
UDA-based object detection task Cityscapes → Foggy cityscapes.

N (the number of frequency components)

Method 16 24 32 40 48 56
SUDA 41.5 41.8 42.8 42.5 42.7 42.5

Table 4. The sensitivity of parameter N affects UDA-based object
detection task Cityscapes → Foggy cityscapes.

λc

λs 0.01 0.05 0.1 0.5 1.0
0.1 41.3 42.7 42.8 42.1 41.7

Table 5. The sensitivity of balance weights λc affects UDA-based
object detection task Cityscapes → Foggy cityscapes.

λs

λc 0.01 0.05 0.1 0.5 1.0
0.1 41.6 42.5 42.8 42.6 42.3

Table 6. The sensitivity of balance weights λs affects UDA-based
object detection task Cityscapes → Foggy cityscapes.

56 with a step of 8. Table 4 shows experimental results
over UDA-based object detection task Cityscapes→ Foggy
cityscapes (using deformable-DETR [22]). It can be seen
that the detection performance is quite tolerant to the param-
eter N and the best performance is obtained when N = 32.

Balance Weights: The weights λc and λs balance
the influences of inter-domain adaptation loss Ladv and
self-supervised learning loss Lself . Here we study the
sensitivity of λc and λs over UDA-based object detec-
tion Cityscapes → Foggy Cityscapes (using deformable-
DETR [22]).

First, we fix λs at 0.1 and change λc from 0.01 to 1.0. As
shown in Table 5, the detection performance is quite tolerant
to λc and the best detection performance is obtained when
λc is set at 0.1. In addition, we fix λc at 0.1 and change λs
from 0.01 to 1.0. as shown in Table 6. It can be seen that
the detection performance is quite tolerant to λs as well and
the best detection performance is obtained when λs is set at
0.1.

C. Qualitative Results
C.1. Visualization of ST-generated Images

We present visual illustrations of ST-generated images
(i.e., ST1 output and ST2 output) over UDA-based object

detection tasks Pascal VOC → Clipart1k and Cityscapes
→ Foggy cityscapes. Figs. 1 and 2 show the correspond-
ing illustrations, respectively. It can be seen that the ST-
generated source and target images have smaller inter-
domain discrepancy which is desirable in UDA-based ob-
ject detection tasks.

C.2. Qualitative Detection Results

We present qualitative illustrations and comparisons over
UDA-based object detection task Cityscapes → Foggy
cityscapes. We compare the proposed SUDA and state-
of-the-art method SAP [12] over standard deformable-
DETR [22]. As Fig. 3 shows, deformable-DETR produces a
number of false detections due to the domain gap. SAP gen-
erates more precise bounding boxes but misses some small
objects. The proposed SUDA adapts from normal weather
to foggy weather well and can detect more valid objects un-
der fogs.
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