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In this Supplemental Material, we present additional in-

formation and experimental results in support of the find-

ings from the main paper. We first describe the architecture

details of the two main components of the proposed STNet:

SNNformer Feature Extractor (SFE) and Temporal-Spatial

Feature Fusion (TSFF); see section 2. Next, in section 3,

we provide the raw RSRs and RPRs of the top five meth-

ods on the FE240hz [13] dataset. We provide additional

evaluations for non-rigid and rigid objects on the VisEv-

ent [7] dataset, and the corresponding results are shown in

section 4. In Section 5, we demonstrate the impacts of the

three essential hyperparameters, which are the decay factor

α, the spiking threshold Vth, and the number of accumu-

lated event-frames, n. Section 6 provides ablation experi-

ments validating the architecture choices we made for the

proposed model. In Section 7, we provide insights into the

capability of the proposed model in filtering noise. Finally,

we provide a Supplemental Video to intuitively demonstrate

the effectiveness of the proposed STNet under four different

degraded conditions; see section 8.

1. Summary of Symbols
In Figure 1, 2, and 4, the following symbols are used:

Ck denotes a convolutional layer with a kernel size of k×k;

ψ is an operator consisting of Batch Normalization (BN)

and a ReLU activation function;

μ is a MEAN operation;

A denotes adaptive average pooling;

σ is a sigmoid function;

R denotes a reshape function;· denotes matrix multiplication;

ϕ is a softmax function;

M is a three-layer MLP operator with one linear input layer,

one ReLU activation function, and one linear output layer;

C denotes a concatenation operation;

× and + denote the element-wise multiplication and addi-
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tion, respectively;

p denotes max pooling;

t denotes a tanh function.

2. SFE and TSFF
We provide two detailed illustrations for the proposed

SFE and TSFF in Figure 1 and Figure 2, respectively. Com-

pared to their counterparts in the main manuscript, these

two schematics provide more details in architecture, which

are essential in understanding our design intuitively.
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Figure 1. The detailed architecture of the SNNformer Feature Ex-

tractor (SFE). T is a reduced Swin-transformer [10]. The compute

entropy module is implemented based on Eq. 15.

3. Raw RSRs and RPRs
The raw RSRs and RPRs of the top five methods on the

FE240hz [13] dataset under four different adverse condi-

tions are provided in Table 1. Specifically, the four adverse
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Figure 2. The detailed architecture of the Temporal-Spatial Fea-

ture Fusion (TSFF) module.

conditions are: (a) scenes with objects similar to the ob-

ject being tracked (SOSOBT); (b) severe camera motion;

(c) scenes illuminated with a strobe light; and (d) high dy-

namic range (HDR) scenes.

We report the raw RSRs and RPRs with respect to the

tracking speed of the top five methods on the FE240hz [13]

dataset in Table 2. The results validate that the proposed

STNet offers the best performance in both accuracy and

speed. We note that the time for preprocessing events is not

included when estimating the tracking speeds of all track-

ers.

Methods KYS [3] PrDiMP [6] STRAK-S [12] TransT [4] STNet

RSR

SOSOBT 0.446 0.524 0.471 0.516 0.535
severe camera motion 0.297 0.286 0.269 0.330 0.351
strobe light 0.335 0.391 0.321 0.382 0.392
HDR 0.503 0.505 0.493 0.480 0.508
over all 0.553 0.552 0.554 0.567 0.585

RPR

SOSOBT 0.628 0.737 0.627 0.742 0.746
severe camera motion 0.565 0.538 0.429 0.562 0.622
strobe light 0.483 0.565 0.397 0.549 0.574
HDR 0.825 0.815 0.755 0.820 0.832
over all 0.878 0.868 0.837 0.890 0.896

Table 1. The RSRs and RPRs of the top five competing ap-

proaches on the FE240hz [13] dataset under four degraded con-

ditions. SOSOBT means scenes with objects similar to the object

being tracked.

Methods KYS [3] PrDiMP [6] STRAK-S [12] TransT [4] STNet

RSR 0.553 0.552 0.554 0.567 0.585
RPR 0.878 0.868 0.837 0.890 0.896

Speed(fps) 27.8 36.2 41.3 43.8 85.3

Table 2. The RSRs and RPRs with respect to tracking speed of the

top five competing approaches on the FE240hz [13] dataset.

4. Additional Evaluations

The FE240hz and EED datasets only contain rigid ob-

jects. To assess the effectiveness of the proposed STNet

with non-rigid objects, we use the VisEvent [7] dataset.

However, at the moment of conducting our experiments,

VisEvent has much inaccurate or missing information, mak-

ing it hard to be used directly. We manually check all the

sequences of the VisEvent dataset and remove the problem-

atic ones (e.g., missing event data or misaligned timestamps

between frame and event domains). Eventually, we obtain

377 sequences for training and 172 for testing. Among the

172 testing sequences, 63 of them contain non-rigid objects.

We train the proposed STNet on the 377 sequences and

test the trained STNet in three different ways: first, we

use all 172 testing sequences to assess the effectiveness of

the STNet with both rigid and non-rigid objects presented,

and the corresponding results are reported in the main pa-

per; Second, we evaluate the trained STNet with the 63 se-

quences that only contain non-rigid objects, and Figure Fig-

ure 3 (a) shows the experimental results under this setting;

Third, the effectiveness of the STNet on single rigid ob-

ject tracking is assessed with the rest 109 sequences, and

the corresponding results are shown in Figure Figure 3 (b).

The overall tracking performance is reported in Table Ta-

ble 4. Based on these experimental results, the proposed

STNet offers the best performance in rigid and non-rigid

object tracking compared to other competing approaches.
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(a) Precision (left) and Success (right) plot on non-rigid objects
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Figure 3. Precision (left) and Success (right) plot on the rigid and

non-rigid objects the VisEvent [7] dataset.



5. Impact of Hyperparameters

There are three essential hyperparameters in the pro-

posed STNet: the decay factor α of the leaky integrate-and-
fire (LIF) [8] spiking neuron, used in Eq. 10; The spiking

threshold Vth in Eq. 13, defining the spiking triggering po-

tential value; The n in Eq. 7, which is the number of aggre-

gated event-frames. Here, we study their impact on single

object tracking performance with the FE240hz dataset in

accuracy and efficiency.

Based on the experimental results shown in Table 3, the

values of α and Vth used in our experiments (i.e., 0.2 and

0.3) offer the best results in both tracking accuracy and

efficiency. For the value of n, with a larger value, it in-

creases the tracking accuracy but slows down the tracking

efficiency, and vice versa. In our experiments, we set it to

5, offering the best trade-off between the tracking accuracy

and efficiency.

α Vth n
0.1 0.2 0.3 0.1 0.3 0.5 3 5 10

RSR 57.9 58.5 57.7 58.1 58.5 57.0 56.9 58.5 58.8

RPR 88.4 89.6 88.4 88.7 89.6 88.3 88.0 89.6 90.3

FPS 85.3 85.3 85.3 85.3 85.3 85.3 97.4 85.3 56.2

Table 3. Hyperparameter evaluations on the FE240hz dataset.

6. Models in Ablation Experiments

In our ablation experiments, we replace the 3-layer SNN

model in the SNN branch of the SFE module with the fol-

lowing three models: (a) a 3-layer CNN; (b) an AlexNet;

and (c) an LSTM. The ablated (and replaced) model parts

are listed in Figure 4 (a), (b), and (c), respectively.

7. Robustness to Noise

The spiking mechanism of SNNs acts as a natural noise

filter. To get insights into this capability, we use the SNN

branch (SB) of the SFE module to conduct the following ex-

periments: (i) replacing the SNN with the LSTM shown in

Figure 4 (c); (ii) using the original SNN network, but with

a fixed spiking threshold, 0.3; (iii) using the original SNN

and with the proposed dynamic spiking threshold scheme.

The experimental results are shown in Figure 5, indicating

that (iii) offers the best noise filtering results and (i) results

in the worst performance. Based on (ii) and (iii), we see

the dynamic threshold plays an essential role in filtering out

noise. The corresponding visualizations are obtained based

on the output features of the SNN branch, (FT ), for (ii) and

(iii). For (i), we use the LSTM output feature vector, which

is the mean of the output ht of all cells, for visualization.

The heatmaps shown in Figure 5 are plotted by Seaborn li-
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Figure 4. The detailed architectures of the three models used in our

ablation experiments; (a) 3-layer CNN, (b) AlexNet, (c) LSTM.

brary [1], which directly reflects the raw value of the feature

maps.

8. Supplemental Video

To demonstrate the effectiveness of the proposed STNet,

we provide additional qualitative comparisons of STNet

compared to state-of-the-art trackers under different de-

graded conditions in our Supplemental Video, including (a)

scenes with objects similar to the object being tracked; (b)

severe camera motion; (c) scenes illuminated with a strobe

light; and (d) high dynamic range (HDR) scenes. We refer

to our video for additional details. The Supplemental Video
is available at https://youtu.be/m5LtG4oUQNs



Dataset Metrics SiamRPN [9] ATOM [5] DiMP [2] SiamFC++ [11] OCEAN [14] KYS [3] PrDiMP [6] STRAK-S [12] TransT [4] EFE [13] STNet

non-rigid
RSR ↑ 12.0 16.9 16.2 18.6 15.2 14.6 21.4 20.2 19.0 16.4 22.8
RPR ↑ 19.4 29.4 23.3 30.3 24.8 21.8 32.9 27.8 29.8 24.6 34.7

rigid
RSR ↑ 32.9 36.2 41.4 38.1 35.2 40.7 39.3 39.9 41.0 37.8 42.9
RPR ↑ 47.5 55.9 55.1 54.4 49.5 54.3 53.1 50.0 57.1 52.5 57.6

Table 4. State-of-the-art comparison for the non-rigid objects and rigid objects on the VisEvent [7] dataset in representative success rate

(RSR) and representative precision rate (RPR).

Grayscale Event frame (i) SB → LSTM (ii) SNN w/o DT (iii) SNN w/ DT

Figure 5. Qualitative comparison of three competing models in noise robustness. We use the SNN branch (SB) of the SFE module to

conduct the following experiments: (i) replacing the SNN with an LSTM; (ii) using the original SNN network, but with a fixed spiking

threshold, 0.3; (iii) using the original SNN and with the proposed dynamic spiking threshold scheme.
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