StyleSwin: Transformer-based GAN for High-resolution Image Generation
(Supplementary material)

In the next, we present the architecture and implementation details. In addition, more analysis and qualitative results are
provided. For better reproducibility, we will make the model publicly available.

1. Implementation Details

We train the StyleSwin using the standard non-saturating logistic GAN loss [4] with R; gradient penalty [10]. Specifically,
the discriminator is trained to measure the realism of image samples whereas the generator is trained to generate samples that
the discriminator mistakenly recognizes as real ones. In addition, the R, regularization term penalizes the gradient on real
data to advocate the local stability. The training loss can be formulated as:

Lp = ~Epnp,[log(D(@))] - Eznp, log(l — D(G(2)))] +7 - Eonr, [V2 D(@)|3],
Lo = —E.np.[log(D(G(2)))]-

In practice, we perform R; gradient penalty every 16 iterations and the corresponding weight ~y varies for different datasets.

The training follows the TTUR strategy [7] in which the discriminator adopts a 4x larger learning rate than the generator.
We linearly decay the learning rate to O from the LR decay start iteration for training all datasets except CelebA-HQ 1024.
We apply spectral normalization [1 1] upon discriminator to ensure its Lipschitz continuity. The transformers are initialized
with a truncated normal distribution [5] with zero mean and standard deviation of 0.02. For the convolution 1 x 1 used
in tRGB layers, we use Glorot initialization [3] with a gain of 0.02. We use an exponential moving average of weights of
generator [8] when sampling image, with a decay rate of 0.9978 following [9].

When synthesizing 256 x 256 resolution images of FFHQ and CelebA-HQ, the training benefits from balanced consistency
regularization (bCR) [14]. Specifically, images are augmented by {Flipping, Color, Translation, Cutout} of probability {0.5,
1.0, 1.0, 1.0} as in DiffAug [13]. Translation is performed within [—1/8, 1/8] of the image size, and random squares of half
image size are masked when applying Cutout.

We implement the StyleSwin using Pytorch and conduct experiments with Tesla V100 GPUs. Training on 1024 x 1024
resolution takes about 14 days using 8 32GB GPUs. The hyper-parameters in the experiments are summarized in Table 1.

‘ FFHQ-256 CelebA-HQ 256 LSUN Church 256 FFHQ-1024 CelebA-HQ 1024

Training iteration 32.0M 25.6M 48M 25.6M 25.6M
Number of GPUs 8 8 8 16 16
Batch size 32 32 32 32 32
Learning rate of D 2e —4 2e —4 2e —4 2e —4 2e —4
Learning rate of G 5e — 5 5e —5 5e —5 5e — 5 5e —5
LR decay start iteration 24.8M 16M 41.6M 19.2M -
R regularization ~y 10 5 5 10 10
bCR v v X X X

Table 1. Experiment settings for different datasets.

2. Detailed Architecture

StyleSwin starts from a constant input of size 4 x 4 x 512 and hierarchically upsamples the feature map with transformer
blocks. We use two transformer blocks to model each resolution scale. The detailed model architecture is shown in Table 2.

“Double attn, 512-d, 4-w, 16-h” indicates a double attention block with a channel dimension of 512, window size of 4, and
16 attention heads. “Bilinear upsampling, 512-d” indicates a bilinear upsampling layer followed by feedforward MLPs with

an output dimension of 512.

Input size | StyleSwin-256 | StyleSwin-1024
Double attn, 512-d, 4-w, 16-h %2 Double attn, 512-d, 4-w, 16-h %2
4x4 MLP, 512-d MLP, 512-d
‘ Bilinear upsampling, 512-d ‘ Bilinear upsampling, 512-d
Double attn, 512-d, 8-w, 16-h %92 Double attn, 512-d, 8-w, 16-h %2
8x8 MLP, 512-d MLP, 512-d
‘ Bilinear upsampling, 512-d ‘ Bilinear upsampling, 512-d
Double attn, 512-d, 8-w, 16-h %92 Double attn, 512-d, 8-w, 16-h % 2
16x16 MLP, 512-d MLP, 512-d
‘ Bilinear upsampling, 512-d ‘ Bilinear upsampling, 512-d
Double attn, 512-d, 8-w, 16-h %92 Double attn, 512-d, 8-w, 16-h %2
32x32 MLP, 512-d MLP, 512-d
‘ Bilinear upsampling, 512-d ‘ Bilinear upsampling, 256-d
Double attn, 512-d, 8-w, 16-h %2 Double attn, 256-d, 8-w, 8-h %2
64x64 MLP, 512-d MLP, 256-d
‘ Bilinear upsampling, 256-d ‘ Bilinear upsampling, 128-d
Double attn, 256-d, 8-w, 8-h %2 Double attn, 128-d, 8-w, 4-h %2
128%x 128 MLP, 256-d MLP, 128-d
‘ Bilinear upsampling, 128-d ‘ Bilinear upsampling, 64-d
Double attn, 64-d, 8-w, 4-h
Double attn, 128-d, 8-w, 4-h { i i ’ } X 2
256x256 { MLP, 128-d } X 2 MLP, 64-d
‘ ‘ Bilinear upsampling, 32-d
Double attn, 32-d, 8-w, 4-h %9
512x512 MLP, 32-d
‘ ‘ Bilinear upsampling, 16-d
Double attn, 16-d, 8-w, 4-h
1024 % 1024 { MLP, 16-d } x 2

Table 2. The detailed generator architecture of StyleSwin-256 and StyleSwin-1024.

3. The Modeling Capacity of Double Attention

In order to prove the improved expressivity of the proposed double attention, we train an autoencoder for image recon-
struction. Specifically, we adopt a conv-based encoder — a ResNet-50 pretrained from MoCo [6] such that both the low-level
and high-level information are well preserved in the 16 x 16 feature map [12]. The latent feature map is further fed into the
decoder for image reconstruction. The decoder adopts transformer blocks, which hierarchically upsamples the latent feature
map and reconstructs the input. No style injection module is needed and we replace AdaIN with layer normalization. The
decoder adopts either the vanilla Swin attention block or the proposed double attention. The autoencoders are trained with
L1 loss. Figure 1 shows the training loss curve of the two autoencoders. One can see that the decoder with double attention
shows faster convergence and yields lower reconstruction loss, indicating that the decoder that leverages enhanced receptive
field shows stronger generative capacity.

\ —— Vanilla Swin attention
10 1 Double attention

I
WA \
YW\ ;\‘,A.‘ |
VAL Al
A
S iy ’M_,P\-‘ M«“\fﬁv A
MR
VYA «M,"‘h\f"u\‘)l
SIS 2 A% VLA 1s
A 1\1,4',1 \Y \{H .’\;‘"l‘f

0.05M 02M 0.4M 0.8M 1.0M 12M

M
Training steps

Figure 1. Image reconstruction training loss of autoencoders. The autoencoder adopts a fixed conv-based encoder and transformer-based
decoder and is trained with £; loss. The decoder with double attention shows improved modeling capacity over the vanilla Swin attention.

4. Additional Quantitative Evaluation

To further demonstrate StyleSwin’s strong ability to model complex scenes and materials, we train our model on a subset of
LSUN Car, which achieves comparable performance to state-of-the-art StyleGAN2. We also present additional quantitative
evaluation results in terms of KID [!] and FID-Inf [2] on all evaluation datasets, comparing to StyleGAN2. The detailed
measures are presented in Table 3 and Table 4.

Methods FFHQ-256 Church-256 CelebAHQ-256 Car-256

) FID | KIDx10™® | FID-Inf | FID | KIDx10™® | FID-Inf | FID | KIDx10™% | FID-Inf | FID | KIDx10™® | FID-Inf
StyleGAN2 | 3.62 145 137 | 3.86 171 153 - 432 1.63 1.60
StyleSwin | 2.81 0.54 083 | 2.95 102 144 | 325 0.61 136 | 435 1.53 1.80

Table 3. Evaluation results comparing to StyleGAN2 on resolution 256 in terms of FID, KID and FID-Inf.

FFHQ-1024 CelebAHQ-1024
Methods _3 -3
FID \ KIDx 10 \ FID-Inf | FID \ KIDx 10 \ FID-Inf
StyleGAN2! | 4.41 1.22 1.57 | 5.17 1.71 1.53
StyleSwin | 5.07 2.07 213 | 443 1.42 2.08

Table 4. Evaluation results comparing to StyleGAN2 on resolution 1024 in terms of FID, KID and FID-Inf. We report the metrics of
StyleGAN2 on FFHQ-1024 and that of StyleGAN on CelebA-HQ 1024.

5. More Qualitative Results

Latent code interpolation. To explore the property of the learned latent space of StyleSwin, we randomly sample two latent
codes in the latent space and perform linear interpolation between them. As shown in Figure 2, our StyleSwin could produce
smooth, meaningful image morphing with respect to different styles like gender, poses, and eyeglasses.

Additional image samples. We provide additional image samples generated by our StyleSwin. Figure 3 and Figure 4
show the impressive synthetic face images of FFHQ-1024 and CelebA-HQ 1024 with diverse viewpoints, backgrounds, and
accessories, which illustrate the strong capacity of the proposed StyleSwin. Image samples of LSUN Church 256 and LSUN
Car 256 are shown in Figure 5 and Figure 6, showing that our StyleSwin is capable to synthesize complex scenes with
coherent structures and complicated materials with high-quality light effects.

6. Responsible AI Considerations

Our work does not directly modify the exiting images which may alter the identity or expression of the people. We
discourage the use of our work in such applications as it is not designed to do so. We have quantitatively verified that the
proposed method does not show evident disparity, on gender and ages as the model mostly follows the dataset distribution,
however, we encourage additional care if you intend to use the system on certain demographic groups. We also encourage
use of fair and representative data when training on customized data. We caution that the high-resolution images produced
by our model may potentially be misused for impersonating humans and viable solutions so avoid this include adding tags or
watermarks when distributing the generated photos.

7. Discussion of Limitation

Although, as stated in the main article, StyleSwin’s theoretical FLOPs are smaller than StyleGAN2, there is a gap between
the theoretical FLOPs and the throughput in practice. The throughput of StyleGAN2 and StyleSwin are 40.05 imgs/sec and
11.05 imgs/sec respectively on a single V100 GPU. This is primarily due to the fact that vision transformers have not been
sufficiently optimized as ConvNets (e.g. using CuDNN), and we believe future optimization will democratize the usage of
transformers as they exhibit lower theoretical FLOPs. Besides, bCR is not effective on 1024 x 1024, which we leave for
further study.

S

Gy

L

Figure 4. Image samples of CelebA-HQ 1024 x 1024.

SUY ©F .
Figure 5. Image samples of LSUN Church 256 x 256.

Figure 6. Image samples of LSUN Car 256 x 256.

References

(1]
(2]

(3]

(4]

(5]
(6]

(7]
(8]

(9]
(10]

(11]
[12]

(13]
(14]

Mikotaj Bifikowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401,2018. 3

Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find them. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 6070-6079, 2020. 3

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics, pages 249-256. JIMLR Workshop and Conference
Proceedings, 2010. 1

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua
Bengio. Generative adversarial nets. In NIPS, 2014. 1

Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture, 2018. 1

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation
learning, 2020. 2

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium, 2018. 1

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196, 2017. 1

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks, 2019. 1

Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually converge? In ICML,
2018. 1

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks.
ArXiv, abs/1802.05957, 2018. 1

Nanxuan Zhao, Zhirong Wu, Rynson WH Lau, and Stephen Lin. What makes instance discrimination good for transfer learning?
arXiv preprint arXiv:2006.06606, 2020. 2

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for data-efficient gan training, 2020. 1

Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, and Han Zhang. Improved consistency regularization
for gans, 2020. 1

	. Implementation Details
	. Detailed Architecture
	. The Modeling Capacity of Double Attention
	. Additional Quantitative Evaluation
	. More Qualitative Results
	. Responsible AI Considerations
	. Discussion of Limitation

