Appendix of CodedVTR: Codebook-based
Sparse Voxel Transformer with Geometric Guidance

1. Architecture Design

In this section, we present the detailed model architec-
ture. We follow the MinkowskiNet’s [1] scheme and adopt
their ResNet-20 and ResNet-42 architecture, and replace
their ResNet-like building block with our CodedVTR block.
The CodedVTR block shares the same input and output
channel size as the ResNet block.

Stem: Sparse Conv (16)

‘ Pool
compatible
Sparse Conv ResNet Block (32) [¥§A - —-———> CodedVTR Block (32)
i Pool l

Sparse Conv ResNet Block (64) Y¢A

{ Pool IN.32] Relation
Learning

Sparse Conv ResNet Block (128) ¥}

~" Codebook ~,
} UnPool LG |

Extraction 1

]

- i @)

]
Sparse Conv ResNet Block (64) Y92 d .
]
i

Geometric-Aware

'
i
1
1
1
1
1
1
1
1

} UnPool 0,32 -
VY
Sparse Conv ResNet Block (64) IS¢ Coded
_ @ hall attn_map

1 UnPool [N, 32] [N, 32]
v

Sparse Conv ResNet Block (48) YA l

‘ Output

Figure 1. The architecture of CodedVTR. The CodedVTR
shares the backbone architecture like MinkowskiNet [1] while re-
placing the convolution block with CodedVTR block.

2. Design of Geometric Pattern

In this section, we give a detailed description of the de-
sign process of the geometric pattern. We apply cluster-
ing on the one-hot neighbor sparse masks for each dataset,
stride, and dilation. We randomly sample 10 scenes for
each dataset and acquire the neighbor sparse mask in the
3 x 3 x 3 region with different strides and dilations. It could
be represented with a 27-dimension one-hot sparse mask,

Clustering t-SNE Visualization Generated Geometric Patterns

8 2
S BN B
-
w
.
L
o
o
:

ol ‘:é”% 5
!w "":”" o 5 10 15 20 25

. $
g

P 4 a2 °
2 P I o
> 4 - 5 06

o
o "

Figure 2. The design process of geometric pattern. The geo-
metric patterns are generated through clustering on the neighbor
sparse masks for each dataset, stride and dilation.

where each element represents whether the neighbor loca-
tion is occupied or not. We apply K-modes clustering [2]
to generate)M representative sparse patterns, and the clus-
tering centroids are chosen as the geometric pattern used in
geometry-aware attention. We take the dilation=1, stride=2,
sparse patterns on semanticKITTI as an example. Fig. 2
visualizes the t-SNE of the clustered sparse patterns. The
hyper-parameter M is chosen by investigating the “saturate
point” of the clustering error, as illustrated in Fig. 2, we set
M as 8.

3. Comparison of Model Generalization

In this section, we present the analysis of model gen-
eralization. We tune the training hyperparameters (weight
decay and learning rate) to align the training accuracy for
VoTR (voxel transformer) and our CodedVTR under simi-
lar model capacity. As shown in Fig. 3, the CodedVTR has
notably higher performance on the validation set, denoting
that it has better generalization ability.

~e- VoTRtrain
CodedVTR-train g

—e— VoTRwval P

80 CodedVTR-val =

Figure 3. Comparison of the generalization for voxel trans-
former and CodedVTR With similar training accuracy, the Cod-
edVTR has superior validation accuracy, proving that it has bet-
ter generalization ability compared with the original voxel trans-
former.

4. Limitations and Future Work

This section discusses possible directions or approaches
to improve our proposed CodedVTR. Firstly, when the
codebook-based attention has “hard” choices, it becomes
a “discretized self-attention” and has the potential for bet-
ter efficiency. In the future, we might explore techniques
to train a discretized version of our CodedVTR to achieve
better inference-time efficiency. Secondly, using the clus-
tering centroids as the geometric patterns of the codebook
elements could be suboptimal. Developing more advanced
learning-based methods to acquire them in the training pro-
cess jointly is an interesting future exploration.

References

[1] Christopher Bongsoo Choy, JunYoung Gwak, and Silvio
Savarese. 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3070—
3079, 2019.

[2] Nelis J. de Vos. kmodes categorical clustering library.
https://github.com/nicodv/kmodes, 2015-2021.

