
A. Algorithms

We present the DC-SSL algorithms with training-free
and training-based strategies in Algorithms 1 and 2. Due to
their simplicity, both strategies are easy to be implemented
with only minor changes to FixMatch.

Algorithm 1 DC-SSL with Training-free strategy
Input: labeled batch X = {(xb, yb)|(xb, yb) 2 Dx}Bb=1,
unlabeled batch U = {ub|ub 2 Du}µBb=1
Parameter: unlabeled ratio µ, momentum coefficient ↵,
threshold ⌧ , loss weight �u

1: Calculate supervised loss Lx on X using Eq. (2).
2: for b = 1 to µB do

3: Obtain f ’s predictions pw,f
b and p

s,f
b for uw

b and u
s
b

4: Obtain g’s prediction pw,g
b for uw

b
5: end for

6: Estimate the PCD q
f using Eq. (4)

7: Estimate the RCD q
g using Eq. (5)

8: Obtain revised pseudo-labels p̄w,f
b using Eq. (6)

9: Calculate consistency loss Lu using Eq. (7)
10: return Lx + �uLu

Algorithm 2 DC-SSL with Training-based strategy
Input: labeled batch X = {(xb, yb)|(xb, yb) 2 Dx}Bb=1,
unlabeled batch U = {ub|ub 2 Du}µBb=1
Parameter: unlabeled ratio µ, momentum coefficient ↵,
threshold ⌧ , loss weight �u and �d

1: Calculate supervised loss Lx on X using Eq. (2).
2: for b = 1 to µB do

3: Obtain f ’s predictions pw,f
b and p

s,f
b for uw

b and u
s
b

4: Obtain g’s prediction pw,g
b for uw

b
5: end for

6: Estimate the PCD q
f using Eq. (4)

7: Estimate the RCD q
g using Eq. (5)

8: Calculate instance-consistency loss Lu using Eq. (9)
9: Calculate distribution-consistency loss Ld using Eq. (8)
10: return Lx + �uLu + �dLd

B. EMA model for pseudo-label generations

In this section, we investigate two different ways to using
the EMA model’s predictions as pseduo-labels, as shown
in Figs. 5b and 5c. The revised-V1 directly replaces the f
with g to produce pseudo-labels, while the revised-V2 re-
tains the FixMatch structure and generate pseudo-labels on
g. As shown in Tab. 7, the revised-V2 can achieve rela-
tively higher test accuracy, simply because it ensures f can
also view the weakly-augmented images, which can slightly
benefit the Batch-normalization layers of f . However, as
we have discussed in Sec. 3.2.1, the accuracy in both ways
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Figure 5. (a) shows the standard structure of FixMatch while (b)
and (c) show two different ways to use the EMA’s predictions as
pseudo-labels on top of FixMatch, respectively.

Method Accuracy (%) Pseudo-labels

Quality (%) Quantity (%)

FixMatch 82.5 83.4 96.9
revised-V1 43.6 44.7 93.1
revised-V2 45.31 46.3 90.1

Table 7. Test accuracy on different ways to use the EMA model’s
prediction as pseudo-labels. The model configurations of “revised-
V1” and “revised-V2” are shown in Figs. 5b and 5c, respectively.
“Quality” represents the accuracy of high-confidence pseudo-
labels while “Quantity” represents the ratio between the amount
of high-confidence pseudo-labels to that of total pseudo-labels.

decreases sharply compared to the original FixMatch.

C. Benefits of the EMA model

In our paper, based on the analysis on CIFAR10 with
40 labels, we observe that the EMA model can achieve a

higher accuracy of pseudo-labels on all unlabeled data

but a lower accuracy on high-confidence ones. As shown
in Fig. 6, we find the same observations on MiniImageNet
with 1000 labels. In addition, we investigate the perfor-
mance of the EMA model in a mismatched distribution set-
ting on CIFAR-10 with |Dx| = 40 and �u = 50. It can
been seen from Fig. 7 that g can outperform f throughout
the training process in terms of the accuracy on all pseudo-
labels, yet with lower accuracy on high-confidence ones.
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(a) Test accuracy
(b) Accuracy difference on high-confidence
pseudo-labels (c) Accuracy difference on all pseudo-labels

Figure 6. Following the explorations in Fig. 4, we observe same findings on MiniImageNet with 1000 labels. (b) In terms of the accuracy
difference (Qf � Qg) of the high-confidence pseudo-labels in a mini-batch, g obtains a lower accuracy than f at about 61% iterations.
(c) However, the accurate difference (Af �Ag) of all pseudo-labels between f and g shows that the model g can generate more accurate
pseudo-labels in 88% iterations.
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(a) Test accuracy
(b) Accuracy difference on high-confidence
pseudo-labels (c) Accuracy difference on all pseudo-labels

Figure 7. Following the explorations in Fig. 4, we investigate the EMA model’s performance on CIFAR10 in a mismatched distribution
setting as in Fig. 1b. (b) In terms of the accuracy difference (Qf � Qg) of the high-confidence pseudo-labels in a mini-batch, g obtains
a lower accuracy than f at about 67% iterations. (c) However, the accurate difference (Af � Ag) of all pseudo-labels between f and g
shows that the model g can generate more accurate pseudo-labels in 97% iterations.


