
A. Appendix
A.1. Details about the reformulation in Sec 3.1

Details of the mathematical derivation in Sec 3.1 of the
manuscript are as follows (notations are the same in Sec 3.1
of the manuscript):

KD = KL(pT ||pS)

=
CX

i=1

pTi log(
pTi
pSi

)

= pTt log(
pTt
pSt

) +
CX

i=1,i 6=t

pTi log(
pTi
pSi

).

(8)

According to Eqn.(1) and Eqn.(2) of the manuscript, we
have p̂i = pi/p\t. Thus, we can rewrite Eqn.(8) to:

KD = pTt log(
pTt
pSt

) +
CX

i=1,i 6=t

pT\tp̂
T
i log(

pT\tp̂
T
i

pS\tp̂
S
i

)

= pTt log(
pTt
pSt

) +
CX

i=1,i 6=t

pT\tp̂
T
i (log(

p̂Ti
p̂Si

) + log(
pT\t
pS\t

))

= pTt log(
pTt
pSt

) +
CX

i=1,i 6=t

pT\tp̂
T
i log(

p̂Ti
p̂Si

)

+
CX

i=1,i 6=t

pT\tp̂
T
i log(

pT\t
pS\t

).

(9)

Since pT\t and pS\t are irrelevant to the class index i, we
have:

CX

i=1,i 6=t

pT\tp̂
T
i log(

pT\t
pS\t

) = pT\t log(
pT\t
pS\t

)
CX

i=1,i 6=t

p̂Ti

= pT\t log(
pT\t
pS\t

).

(10)

Then,

KD = pTt log(
pTt
pSt

) + pT\t log(
pT\t
pS\t

)

| {z }
KL(bT ||bS)

+pT\t

CX

i=1,i 6=t

p̂Ti log(
p̂Ti
p̂Si

)

| {z }
KL(p̂T ||p̂S)

.

(11)

According to the definition of KL-Divergence, Eqn.(11)
can be rewritten as (which is the same as Eqn.(5) of the
manuscript):

KD = KL(bT ||bS) + (1� pTt)KL(p̂T ||p̂S) (12)

A.2. Implementation: Experiments in Sec 4
CIFAR-100: Our implementation for CIFAR-100 fol-

lows the practice in [33]. Teachers and students are trained

for 240 epochs with SGD. As the batch size is 64, the
learning rates are 0.01 for ShuffleNet [21] and MobileNet-
V2 [30], 0.05 for the other series (e.g. VGG [32], ResNet [9]
and WRN [42]). The learning rate is divided by 10 at 150,
180 and 210 epochs. The weight decay and the momentum
are set to 5e-4 and 0.9. The weight for the cross-entropy
loss is set to 1.0. The temperature is set as 4 and ↵ is set as
1.0 for all experiments. The proper value of � could be dif-
ferent for different teachers, and the details and discussions
are in the next section. And we utilize a 20-epoch linear
warmup for all experiments since the value of � could be
high leading to a large initial loss.

ImageNet: Our implementation for ImageNet follows
the standard practice. We train the models for 100 epochs.
As the batch size is 512, the learning rate is initialized to
0.2 and divided by 10 for every 30 epochs. Weight decay
is 1e-4 and the weight for the cross-entropy loss is set to
1.0. We set temperature as 1 and ↵ as 0.5 for all exper-
iments. Strictly following [1, 33], for distilling networks
of the same architecture, the teacher is ResNet-34 model,
the student is ResNet-18, and � is set to 0.5. For differ-
ent series, the teacher is ResNet-50 model, the student is
MobileNet-V2, and � is set to 2.0.

MS-COCO: Our implementation for MS-COCO follows
the settings in [1]. We use the two-stage method Faster R-
CNN [27] with FPN [19] as the feature extractors. ResNet
[9] models and MobileNet-V2 [30] are selected as teachers
and students. All students are trained with the 1x sched-
uler (schedulers and task-specific loss weights follow De-
tectron2 [39]). We employ the DKD loss on the R-CNN
head, and set ↵ as 1.0, � as 0.25, and temperature as 1 for
all experiments.

Results of compared methods are reported in their origi-
nal papers or reproduced by previous works [1, 33].

A.3. Guidance for tuning �

We suppose that the importance of NCKD in knowledge
transfer could be related to the confidence of the teacher.
Intuitively, the more confident the teacher is, the more valu-
able the NCKD could be, and the larger � should be applied.
However, NCKD could increase the gradient contributed by
logits of non-target classes. Thus, an improper large � could
harm the correctness of the student’s prediction. If the logit
value of the target class is much higher than all non-target
classes, the teacher could be regarded as more confident and
a large beta could be more reasonable. Thus, we suppose
that the value of � could be related to the logit value gap

between the target and all non-target classes. Specifically,
the gap between the logit of the target class (i.e., zt, where z
represents the output logit and t represents the target class)
and the max logit among non-target classes could be reliable
guidance for tuning �, which can be denoted as zt � zmax,
where zmax = max({zi|i 6= t})).

� ResNet56 WRN-40-2 ResNet32x4
1.0 76.02 75.94 74.95
2.0 76.32 76.25 75.64
4.0 75.91 76.17 75.82
6.0 75.62 76.70 76.34
8.0 75.33 76.44 76.45

10.0 75.35 76.21 76.32
zt � zmax 5.36 7.24 8.40

Table A.1. Accuracy(%) on CIFAR-100 [16] with different � and
different teachers. The gap (zt � zmax) is also reported.

We report experimental results on CIFAR-100 [16] to
verify this conjecture. We select ResNet56, WRN-40-2 and
ResNet32⇥4 as teachers and ShuffleNet-V1 as the student,
and apply different �. Both top-1 accuracy (%) and the gap

zt� zmax (averaged over all training samples) are reported.
As shown in Table A.1, the best value of � could be posi-
tively proportional to the gap, which we suppose could be
guidance of tuning � and a direction for further research.
Based on this, the value of � for each teacher in Table 6 and
Table 7 of the manuscript is set as follows (in Table A.2):

teacher zt � zmax �

ResNet56 5.36 2.0
ResNet110 6.73 2.0
WRN-40-2 7.24 6.0

VGG13 8.25 6.0
ResNet50 8.53 8.0

ResNet32⇥4 8.40 8.0

Table A.2. The value of � for different teachers in Table 6 and
Table 7 of the manuscript.

A.4. Implementation: Experiments in Sec 3.2
In this part, we report the implementation details of the

experiments in Sec 3.2 of the manuscript.

Basic settings. We set the loss term of KD and CE as 1.0
and 1.0, respectively (instead of the default 0.1CE+0.9KD

setting in [33]). The setting in [33] follows the loss form
proposed by [12], which assumes that the sum of all terms’
weights should be 1.0. However, the NCKD loss is target-
irrelevant, which means the target-relevant loss could be 0.1
if we utilize the original setting when only applying NCKD.
Based on this, we set the loss weight of all terms (e.g., KD,
TCKD, NCKD and CE) as 1.0 for all experiments in Sec 3.2
of the manuscript.

Strong augmentation. We employ the AutoAugment [5]
to reveal the effectiveness of TCKD in Sec 3.2 of the
manuscript. Specifically, we add the CIFAR AutoAugment
policy7 after applying the default augmentation (random
crop and horizontal flip). Then we train the teacher and the
student with the same augmentation policy.

7https://github.com/DeepVoltaire/AutoAugment

Noisy labels. We also perform experiments on noisy train-
ing data to verify that TCKD conveys the knowledge about
sample “difficulty”. Specifically, we follow the settings
of [7, 35], utilizing the symmetric noise type8. We train a
teacher network on the noisy training data and select the
best epoch to distill the student (on the same training data).

A.5. Explanation about why TCKD brings perfor-
mance drop in Table 1

In Table 1 of the manuscript, we reveal that singly apply-
ing TCKD could bring performance drop sometimes. An
explanation for this phenomenon is that the high tempera-
ture (T=4) will lead to a great gradient to increase the non-
target classes’ logits, which will harm the correctness of
the student’s prediction. Without NCKD, the information
about the class similarity (or the prominent dark knowl-
edge) is not available, so that TCKD’s gradient could do
no good but lead to performance drop (since TCKD could
bring marginal performance gain on easy-fitting training
data). To verify that the large temperature is not proper
when singly applying TCKD, we perform experiments with
different temperatures (T) in the table below. Results in Ta-

T 1 2 3 4
top-1 73.24 73.05 71.69 70.96

Table A.3. Accuracy (%) with different temperature(T) when only
applying TCKD. The teacher and the student are set as WRN-40-2
and WRN-16-2, respectively.

ble A.3 show that the performance is almost the same as the
vanilla training baseline (73.26 in Table 1 of the manuscript)
when the temperature is set as 1. And the performance drop
is positively related to the temperature.

A.6. How to employ DKD on detectors
In this paper, we employ our DKD on the two-stage ob-

ject detector Faster R-CNN. We only employ our DKD on
the R-CNN head. Specifically, given a student network, we
utilize the labels assigned to the proposals (generated by the
RPN module) as the target class(if IoU(proposal) < 0.5, the
target class is set as “background”). Then, we use a teacher
network to get the R-CNN prediction logits of the same pro-

posals (locations are the same, while the features are from
the teacher’s backbone). Thus, we can employ our DKD
by minimizing the KL-Divergence (i.e., TCKD and NCKD)
between the student’s logits and the teacher’s.

A.7. Implementation: Experiments in Sec 4.2
Training efficiency. We report the training time of each
distillation method in Figure 2 of the manuscript. The

8https://github.com/bhanML/Co-teaching/blob/master/data/cifar.py

https://github.com/DeepVoltaire/AutoAugment
https://github.com/bhanML/Co-teaching/blob/master/data/cifar.py

training time (per batch) is the sum of (1) the data pro-
cessing time (e.g., including the time to sample the con-
trast examples in [33]), (2) the network forward time and
the gradient backward time and (3) the memory updating
time (e.g.,including the time to update the contrast mem-
ory in [33]). We also report the number of extra parameters
for each method. Besides the learnable parameters (e.g.,
the connectors in [10] and the ABF modules in [1]), we
also calculate the extra dictionary memory(e.g., the contrast
memory in [33]).

Feature transferability. We perform linear probing exper-
iments to verify the feature transferability of our DKD in
Sec 4.2 of the manuscript. We use the WRN-16-2 distilled
from a WRN-40-2 teacher as the feature extractor (only us-
ing the feature generated by the final global average pool-
ing module), then train linear fully-connected (FC) lay-
ers as classifier modules for STL-10 and Tiny-ImageNet
datasets (the feature extractor is fixed during training). We
train the FC via an SGD optimizer with 0.9 momentum and
0.0 weight decay. The number of total epochs is set as 40,
and the learning rate is set to 0.1 for a 128 batch size and
divided by 10 for every 10 epochs.

	. Introduction
	. Related work
	. Rethinking Knowledge Distillation
	. Reformulating KD
	. Effects of TCKD and NCKD
	. Decoupled Knowledge Distillation

	. Experiments
	. Main Results
	. Extensions

	. Discussion and Conclusion

