
Supplementary Document for
“High-Fidelity Human Avatars from a Single RGB Camera”

In this document, we provide the following supplementary
contents:

• Loss Functions.

• User Study.

• Texture Maps Before and After Optimization.

• More Comparison Results.

• More Application Results.

• Failure Cases.

We also provide a demo video along with this document.

1. Loss Functions
1.1. Geometry Loss

The 2D Joint Loss. The detected 2D joint locations are
used as weak supervision on the projected joints of SMPL,
which is defined as:

LJ2D
= ∥J − Ĵ∥2, (1)

where J is the detected 2D joint locations predicted by a
human pose estimation method [3], and Ĵ is the 2D joint
locations regressed from the predicted vertices.
The Silhouette Loss. The binary segmentation masks are
used to supervise the shape of person to capture instance-
specific details, which is written as:

LM2D
= ∥b(I)− πc(M(β, θ,D))∥2, (2)

where b(I) is the binary segmentation mask predicted by the
matting method [6], πc is the perspective projection matrix,
and M(·) is a function that maps pose and shape parameters
into the vertices of SMPL model .
The Photometric Loss. This term is used to guide the ver-
tices to be close to the right positions and relieve the mis-
alignment of geometry, which is formulated as:

LI2D = ∥I −R(M(β, θ,D), T )∥2, (3)

where R is the image formation function, T is the neural
texture.

The Laplacian Loss. This term is used to prevent the ver-
tices from moving freely and it serves as a local detail-
preserving operator that encourages neighboring vertices to
have the same movement, which is defined as:

Llap = ∥L(M(β, θ,D))− L(M(β, θ,0))∥2, (4)

where L is the Laplacian operator, and 0 is a zero matrix
with the same size as the offsets D.
The Normal Loss. This term is used to enhance the ge-
ometric details. We use the cosine distance to measure
the difference between the predicted normal map and the
ground truth, which is formulated as:

Ln = −< N, N̂ >

∥N∥ · ∥N̂∥
, (5)

where N is the pseudo ground truth estimated by [10], N̂ is
the predicted normal map, and < ·, · > is the cosine func-
tion.

Therefore, the overall geometry loss can be written as:

Lg = λJ2D
LJ2D

+ λM2D
LM2D

+ λI2DLI2D

+ λlapLlap + λnLn,
(6)

where λJ2D
, λM2D

, λI2D , λlap, λn are the weights that bal-
ance the contributions of individual loss terms.

1.2. Appearance Loss

The Data Loss. We employ an Ld loss between the gener-
ated image and the ground truth, which is defined as:

Ld = ∥Ip − Ig∥1 , (7)

where Ip and Ig represent the predicted image and the
ground truth, respectively.
The Perceptual Loss. We adopt a feature loss to increase
the sharpness of the output images. The perceptual loss
calculates the distances between activation layers of pre-
trained VGG-16 network, which can be written as:

Lp =
∑
i

∥ϕi (Ip)− ϕi (Ig)∥1 , (8)
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VideoAvatar [2] Octopus [1] Ours
10.98% 11.42% 77.60%

Table 1. The percentage of each method considered to be ranked first on texture map generation.

Neural Body [8] HF-NHMT [5] StylePeople [4] Ours
7.35% 7.08% 7.70% 77.87%

Table 2. The percentage of each method considered to be ranked first on novel view synthesis.

w/o TS w/o REF Full
10.05% 24.50% 65.45%

Table 3. The percentage of each variant considered to be ranked first on ablation study of different supervision and sharpening schemes.

where ϕi means the i-th activation layer of VGG-16 net-
work.
The Adversarial Loss. This term is employed to penal-
ize the distribution difference between predicted (fake) im-
ages Ip and target (real) images Ig , and to improve the vi-
sual quality of results. To stabilize the training of GANs,
we adopt the Spectral Normalized Markovian Discrimina-
tor [11]. To discriminate whether the input is real or fake,
the losses we used are as follows:

LG = −E [Dsn(G(Iuv))] , (9)

LDsn = E [ReLU (1−Dsn(Ig))] +

E [ReLU (1 +Dsn(G(Iuv)))] ,
(10)

where Dsn represents the spectral-normalized discrimina-
tor, and G is the image generator that takes the UV-map Iuv
as the input.

Therefore, the overall appearance loss can be written as:

La = λdLd + λpLp + λGLG, (11)

where λd, λp, λG are the weights that balance the contribu-
tions of individual loss terms.

2. User Study
To better evaluate the proposed method, we perform a

perceptual evaluation with a user study which consists of 3
group tests. The first group shows the results of VideoA-
vatar [2], Octopus [1] and our method on 6 cases of tex-
ture map generation. The second group shows the results of
Neural Body [8], HF-NHMT [5], StylePeople [4] and our
method on 6 cases of novel view synthesis. The third group
shows 2 cases of ablation study on reference branch and
training scheme. The users are required to sort the results
according to visual quality. We have collected answers from
188 participants, including 66 females and 122 males with

different ages (5 users below 18, 157 users between 18 and
40, 20 users between 40 and 60, and 6 users beyond 60).
We evaluate the percentage of each method considered to
be ranked first, and calculate the median on each group test.
The statistical results of 3 group tests are shown in Tables
1-3, respectively. As shown in Table 1 and Table 2, more
than 75% of users consider that the results of our method
have the best visual quality, which shows that our method
outperforms the other methods on both texture map genera-
tion and novel view synthesis. Table 3 shows that more than
65% of users agree that the full model achieves the best vi-
sual results, which proves the effectiveness of our reference
branch and training scheme.

3. Texture Maps Before and After Optimiza-
tion

To generate a seamless and sharp texture map, we de-
sign a reference-based neural rendering network and exploit
a sharpening-guided fine-tuning strategy in a coarse-to-fine
manner. Figure 1 shows the texture maps before and af-
ter refinement. As shown in the figure, the quality of tex-
ture maps is obviously improved after our refinement. Our
reference-based neural rendering network learns a joint rep-
resentation between geometry and input image, which re-
lieves the misalignment of geometry and enables to gener-
ate sharp and seamless texture maps.

4. More Comparison Results
Table 4 gives the comparison of whether to support

monocular input, fully-textured avatar, high-fidelity novel
view synthesis, and high-fidelity novel pose synthesis. As
shown in the table, only our method supports all the cases.

We evaluate the avatar generation performance by
comparing with two state-of-the-art video-based methods
VideoAvatar [2] and Octopus [1]. More visual results on
People-Snapshot dataset are shown in Figures 2-4. Com-



Method Monocular
Input

Fully-textured
Avatar

Novel View
Synthesis

Novel Pose
Synthesis

StylePeople [4] / ANR [9] ✓ ✗ ✓ ✓
Neural Body [8] ✓ ✗ ✓ ✗

Animatable Nerf [7] ✗ ✗ ✓ ✓
HF-NHMT [5] ✓ ✗ ✓ ✓

Octopus [1] / VideoAvatar [2] ✓ ✓ ✗ ✗
Ours ✓ ✓ ✓ ✓

Table 4. Comparison with state-of-the-art methods. Novel view synthesis and novel pose synthesis mean high-fidelity results. ✗: not
supported, ✓: supported.

Method Neural Body [8] HF-NHMT [5] StylePeople [4] Ours

SelfieVideo 81.8043 45.1285 63.8366 28.1964
PeopleSnapshot [2] 48.9066 91.0957 - 25.5928

Table 5. Quantitative comparison for novel view synthesis using FID. -: not available.

pared with Octopus [1], our method generates seamless tex-
ture maps, and there are no texture mistakes or lost pat-
terns in our generated texture maps. In a word, our method
can generate seamless and sharp texture maps, with better
quality compared with the state-of-the-art methods, which
benefits from our coarse-to-fine framework and sharpening-
guided fine-tuning strategy. Some estimated texture maps
are given in Figure 5.

Besides, Figure 6 and Figure 7 show the comparison re-
sults of the reconstructed geometries. Our method can re-
construct more accurate and detailed geometry, benefiting
from the design of dynamic surface network.

5. More Application Results
Shape Editing. Benefiting from our design of the dynamic
surface network which disentangles the shape and texture of
the person, our method can achieve shape editing by chang-
ing the parameters of the SMPL model. Figure 8 shows
some neural rendering results of one person with the upper-
bodies changing from thin to fat. It can be seen that the
texture is not distorted as the shape changes, which proves
that our method can disentangle the shape and texture of the
person.
Novel View Synthesis. Given a target view, we can gen-
erate a view-conditioned UV-map with rasterization using
z-buffer. With the corresponding UV-map, the geometry is
rasterized using a neural texture by bilinear sampling and
then is translated to an RGB image using a neural network.
We compare our method with three state-of-the-art methods
Neural Body [8], HF-NHMT [5] and StylePeople [4]. The
trained models of Neural Body [8] and HF-NHMT [5] are
generated by the official implementations, and the trained
models of StylePeople [4] on 20 videos of SelfieVideo are

provided by the authors. Table 5 gives the quantitative re-
sults on the two datasets. Due to lack of ground truths, FID
is calculated by computing the distance between distribu-
tions of the generated images and the captured images. Our
method outperforms the other methods.

6. Failure Cases

Although our method generates high-fidelity images
with detailed textures in most cases, it cannot cope with ex-
tremely complex textures due to insufficient representation
capacity of network. Figure 9 shows some examples of fail-
ure cases. For extremely complex patterns, our method fails
to generate photo-realistic results and cannot generate sharp
texture maps. In further work, we will combine efficient im-
plicit representations, e.g., implicit surfaces and NeRFs, to
break through the limitation of the fixed topology, improve
the representation capacity of the framework and generate
more high-fidelity avatars.
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Figure 1. The texture maps before and after refinement.
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Figure 2. Reconstructed textured-avatars by VideoAvatar [2], Octopus [1] and ours on People-Snapshot [2].
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Figure 3. Reconstructed textured-avatars by VideoAvatar [2], Octopus [1] and ours on People-Snapshot [2].
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Figure 4. Reconstructed textured-avatars by VideoAvatar [2], Octopus [1] and ours on People-Snapshot [2].



Figure 5. The texture maps estimated by VideoAvatar [2], Octopus [1] and ours.
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Figure 6. Reconstructed 3D geometries by VideoAvatar [2], Octopus [1] and our method.
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Figure 7. Reconstructed 3D geometries by VideoAvatar [2], Octopus [1] and our method.



Figure 8. The results of shape editing. From left to right, we show the results of person changing from thinness to fatness.
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Figure 9. Some examples of failure cases.
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