
Supplementary Material for HumanNeRF

A. Limitations.

In this paper, we propose a generalizable dynamic hu-
man neural radiance field method to address issues of the
existing approaches. Although very effective, the proposed
HumanNeRF still needs hours of fine-tuning and has some
limitations. First, we use the regressed parametric human
model to handle large pose deformation and complex mo-
tions, and it limits our approaches to the single-person setup
and fails to handle the multi-person or human-object inter-
action situations. Also though we have shown the general-
ization ability of our method, its capability is limited as dis-
tributions of human datasets only cover a small portion of
the human dynamics and appearances. Moreover, we do not
explicitly model lighting conditions, significant brightness
or color change between views may cause severe artifacts.
For example, due to the switching of the nearest views dur-
ing our appearance blending, jumping artifacts appear, es-
pecially for the significant brightness variance in our sparse
input views. Such artifact will be alleviated if the illumina-
tion is almost consistent across views, as shown in the FVV
results of the supplementary video.

B. Components ablation study.

To better evaluate the components of our pipeline, we
also do additional quantitative analysis of different mod-
ules of our method, such as without aggregated pixel align-
ment feature (w/o F ), without pose embedded non-rigid
human deformation (w/o MLPd), and without neural ap-
pearance blending (w/o MLPA). Note that our full mod-
ule achieves the best results.

PSNR↑ SSIM↑ LPIPS↓ MAE↓
Ourswo F 18.36 0.8621 0.1503 13.49
Ourswo MLPd

26.79 0.9704 0.0516 5.251
Ourswo MLPA 29.69 0.9620 0.0703 2.016
Oursfull 33.01 0.9842 0.0334 0.9307

Table 1. Quantitative evaluation of different Components.

As shown in Tab. 2, the average error increases rapidly
as the camera number decreases.

two views four views six views
PSNR↑ 22.44 25.88 32.59
SSIM↑ 0.9324 0.9552 0.9817
LPIPS ↓ 0.0887 0.0562 0.0304

Table 2. Quantity evaluation on the different number of in-
put views. We select six ,four and two camera views for ablation
studies in PSNR, SSIM and LPIPS metrics.

C. Discussion about our generalizability .

Despite the requirement of one hour fine-tuning of un-
seen identities, we would like to point out that our approach
serves as a practical and more efficient scheme for dynamic
and sparse view setting with significantly less fine-tuning
effort than previous methods (see Tab. 3). Our efficient
generalizations are many-fold. First, only our generalizable
NeRF module already provides meaningful yet blur results
in Fig. 1, similar to Neural Human Performer [Kwon et al.].
Second, without per-scene fine-tuning, our method provides
comparable results to previous general and even per-scene
methods. Then, only with efficiently fine-tuning in hours,
we can achieve SOTA performance, even for unseen poses.

Figure 1. Results of our generalizable dynamic neural radiance
field module on unseen identities.

D. Training time comparison.

We compare our method with other per-scene traning
methods in terms of training or fine-tuning time. As shown
in Tab. 3, our method is more efficient than other method.
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Ours Neural Body Neural Volumes ST-NeRF
time 1.2h 6.7h 8.4h 9.5h

Table 3. Quantitative comparison against per-scene training meth-
ods in terms of fine-tuning or training time on the video ”bat-
man” with 300 frames of our multi-view dataset.

E. Network Architectures.
We show detailed network architecture specifications of

our feature extractor network U (that extracts 2D image fea-
tures ), feature blending network MLPB, deformation net-
work MLPd, generalizable dynamic neural radiance field
Φ and appearance blending network MLPA .

Layer k s d channels input
CRB2D Down0 3 1 1 4/32 I
CRB2D Down1 3 1 1 32/64 CRB2D Down0

CRB2D Down2 3 1 1 64/128 CRB2D Down1

CRB2D Down3 3 1 1 128/256 CRB2D Down2

CRB2D Up1 3 1 1 256/256 CRB2D Down3

CRB2D Up2 3 1 1 256/128 CRB2D Up1
CRB2D Up3 3 1 1 128/64 CRB2D Up2

T 3 1 1 64/32 CRB2D Up3

Table 4. Network details of feature extractor network U . k is the
kernel size, s is the stride, d is the kernel dilation, and channels
shows the number of input and output channels for each layer. We
denote CRB2D to be ConvBnReLU2D.

Layer channels input
PE0 6/54, 3/27 view direction d, angle θ
LR0 54 + 27 + 32 ∗ 6/256 PE0, features f
LR1 256/256 LR0

LR2 256/256 LR1

LR3 256/256 LR2

LR4 256/128 LR3

LR5 128/6 LR4

Table 5. Network details of feature blending network MLPB.
PE/LR refers to the positional encoding and LinearRelu layer
structure respectively (same as below).

Layer channels input
PE0 24/216 Rd

LR0 216 + 72 + 32/256 PE0, Rv, F
LR1 256/256 LR0

LR2 256/256 LR1

LR3 256/256 LR2

LR4 256/128 LR3

LR5 128/3 LR4

Table 6. Network details of deformation network MLPd. Rd and
Rv are the distances and directions between sample point p and the
24 joints of the SMPL skeleton. F is the feature after blending.

Layer channels input
PE0 3/63 position x
LR0 63/256 PE0

LR1 256/256 LR0

LR2 256/256 LR1

LR3 256/256 LR2

LR4 27+256/256 PE0, LR3

LR5 256/256 LR2

LR6 256/256 LR2

Density σ 256/1 LR6

PE1 3/27 view direction d
LR7 256+27+32/256 LR2,PE1, F
LR8 256/128 LR7

Color c 128/3 LR8

Table 7. Network details of generalizable dynamic neural radiance
field Φ.

Layer channels input
LR0 (32 + 3) ∗ 2/256 fr, 0r, fl, 0l
LR1 256/256 LR0

LR2 256/256 LR1

LR3 256/256 LR2

LR4 256/256 LR3

LR5 256/256 LR4

LR6 256/128 LR5

Blending weights W 128/3 LR4

Table 8. Network details of appearance blending network
MLPA. fr, 0r, fl, 0l are two adjacent image features and oc-
clusion maps.
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