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Abstract

In supplementary materials, we first demonstrate the loss
function of our method in detail in Section 1. Then, we com-
pare the computational overhead of our method with previ-
ous methods in Section 2. We visualize some representative
samples from A2D Sentences to compare our method with
ACGA in Section 3. We replace the BERT with Bi-LSTM as
the linguistic encoder to extract linguistic features in Sec-
tion 4. In Section 5, we change the appearance encoder
from the ResNet101 to the lighter ResNet50. We conduct ex-
periments to explore the best choice of the number of LGFF
modules in Section 6. Section 7 shows the performance of
our method on Ref-YouTubeVOS. We explore the impact of
changing the optical flow estimation in our model in Sec-
tion 8. Finally, we visualize some examples when the optical
flow estimation fails in Section 9.

1. Loss Function

In this section, we illustrate our loss function during
training in detail. Since the training set of A2D Sentences
[3] only contains 3 to 5 frames with pixel-level annotation
in each video sequence, we view the frame with annota-
tion as the target frame and its previous and next frames as
reference frames, which means that we can only calculate
the loss on the target frame. This is the same as previous
methods. We incorporate the traditional binary cross with
our multi-modal alignment loss to train our whole model,
which is denoted as ”B+M+T+L+A” in Table 3 in the main
paper.

For the feature f1 belonging to the target frame, we
adopt two convolutional layers followed by a sigmoid ac-
tivation function to generate the final prediction map. Then,
we upsample it to the original size and obtain P̂ . The binary
cross entropy loss can be defined as:
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Table 1. Comparison of computational overhead.

Name Input Size GFLOPs mAP
0.5:0.95

ACGA[10] 16× 512× 512 630.83 27.4
CMDY[9] 16× 512× 512 >600 33.3
CSTM[5] 8× 320× 320 213.06 39.9

Our 3× 320× 320 181.47 41.9
B+T+L 3× 320× 320 116.34 40.1

Lbce = −
∑

pi log p̂i + (1− pi) log(1− p̂i), (1)

where p̂i ∈ P̂ represents an element in P̂ . pi is the label of
p̂i.

In Section 3.4 of the main paper, we obtain the multi-
modal alignment loss Lalign for the target frame. The total
loss function can be formulated as:

L = Lbce + Lalign. (2)

2. Computational Overhead
In Table 1, we compare the computational overhead of

our method with previous methods. Previous works de-
pend on 3D CNNs e.g. I3D [1] to extract temporal and
implicit motion information from many reference frames,
which leads to huge computational overhead. Our method
achieves the best performance while with less FLOPs. We
also illustrate the result from ”B+T+L”, which does not con-
tain the motion branch. It can also surpass previous meth-
ods with about 2× less FLOPs than CSTM[5]. These results
verify the effectiveness and efficiency of our method.

3. Qualitative Comparison
In Figure 2, we visualize some representative sam-

ples from A2D Sentences[3] to compare our method with
ACGA[10]. In (a)(b)(c)(d)(e)(f)(g), the 1th, 2th, and
3th column are the ground-truth masks, results from our
method, and results from ACGA[10], respectively. The col-
ored text describes the object with the same color mask. We
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Figure 1. Examples when the optical flow estimation fails.

Table 2. Comparison of the linguistic encoder. ”Our” is the same
as ”B+M+T+L+A” in the main paper.

Name mAP IoU
0.5:0.95 Overall Mean

ACGA[10] 27.4 60.1 49.0
CMDY[9] 33.3 62.3 53.1
CSTM[5] 39.9 66.2 56.1

Our–LSTM 41.2 66.6 55.4
Our 41.9 67.3 55.8

can find that, our method can generate more accurate and
complete segmentation masks e.g. (a)(b) (d) (e). In addi-
tion, our method can distinguish the target object described
by the text from other objects e.g. (c) (f). These results fur-
ther verify the effectiveness of incorporating the motion fea-
tures with appearance and linguistic features.

4. Linguistic Encoder
We also conduct experiments to verify the effectiveness

of BERT [2] as the linguistic encoder. Given a text with L
words, we first replace the BERT in ”B+M+T+L+A” with a
Bi-LSTM[4] to extract the feature of each word, and obtain
L ∈ RL×CL . Then we average the feature of all words and
obtain fL, which can be viewed as the representation of the
whole sentence. This model is denoted as ”Our-LSTM” and
we adopt ”Our” to represent ”B+M+T+L+A” in the main
paper. From Table 2, we can find that the performance of
”Our-LSTM” is worse than ”Our”, although it can still sur-
pass state-of-the-art methods by a large margin in most met-
rics.

5. Appearance Encoder
We change the appearance encoder from the ResNet101

to the lighter ResNet50. From Table 3, we find that this
model still achieves similar performance, e.g. overall IoU
67.1 vs 67.3, and surpass prior methods. This demonstrates
that, with effective multi-modal fusion, our model does not
heavily rely on a strong backbone to achieve good perfor-
mance.

Table 3. Our model with different backbones.

Methods mAP IoU
0.5:0.95 Overall Mean

Our-ResNet50 41.4 67.1 55.3
Our-ResNet101 41.9 67.3 55.8

Table 4. The number of LGFF modules in our model.

Number of LGFF mAP IoU
0.5:0.95 Overall Mean

0 37.6 63.5 51.6
1 39.7 65.7 53.7
2 40.6 66.1 54.7
3 41.1 66.8 54.8

Table 5. Results on Ref-YouTubeVOS [6]
Name Overall J F

URVOS [6] - 41.3 -
Our 45.2 44.1 46.2

Table 6. The Effectiveness of optical flow estimation method.

Name mAP IoU
0.5:0.95 Overall Mean

Our-RAFT 41.9 67.3 55.8
Our-PWC 41.8 67.6 55.8

6. The number of LGFF modules in our model

We conduct experiments to explore the best choice of
the number of LGFF modules in our model. We gradually
replace the concatenation fusion strategy with our “LGFF”
from the high level to the low level. The results are demon-
strated in Table 4. The model with 0,1,2 and 3 LGFF mod-
ules achieve 63.5, 65.7, 66.1, and 66.8 respectively on the
overall IoU. Note that, when the number of LGFF is 0 and 3,
the model equals ”CAT” and ”LGFF” in Table 5 in the main
paper, respectively. Results show that all LGFF modules in
our model are essential.

7. Experiments on Ref-YouTubeVOS

Ref-YouTubeVOS [6] is a recent proposed large dataset
for text-based video segmentation. Compared with A2D
Sentences [3] and J-HMDB Sentences [3], it contains more
object categories and challenging sceneries. To further ver-
ify the generalization ability of our method, we conduct ex-
periments on this dataset, whose results are shown in Ta-
ble 5. Our model can surpass URVOS [6] without multiple
iterations by a large margin.

8. Change the optical flow estimation method.

We change the optical flow estimation method from
RAFT [8] to PWC [7] to generate optical flow maps. The
results are shown in Table 6. We find that both ”Our-RAFT”
and ”Our-PWC” achieve similar performance, which veri-
fies the robustness of our method on optical flow estimation
models.
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Figure 2. Qualitative results comparison on A2D Sentences. In (a)(b)(c)(d)(e)(f)(g), the 1th, 2th, and 3th column are the ground-truth
mask, results from our method, and results from ACGA[10], respectively.

9. Examples when the optical flow estimation
fails

There are two cases when the optical flow estimation
fails. The one is that the flow of the object is incomplete
e.g. the car in Figure 1 (a). The other is that the target ob-
ject is not distinctive in the flow map e.g. Figure 1 (b)(c).
Figure 1 shows that our method can handle these two situa-
tions. This further proves the robustness of our method.
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