
P3IV: Probabilistic Procedure Planning from Instructional Videos
with Weak Supervision
Supplemental Material

He Zhao1,2 Isma Hadji1 Nikita Dvornik1 Konstantinos G. Derpanis1,2

Richard P. Wildes1,2 Allan D. Jepson1

1Samsung AI Centre - Toronto, 2York University
{zhufl, kosta, wildes}@eecs.yorku.ca, {isma.hadji, n.dvornik, allan.jepson}@samsung.com

1. Summary

Our supplemental material is organized as follows: Sec-
tion 2 provides details on the regularization loss used in our
adversarial training. Section 3 elaborates on our inference
procedure using the Viterbi algorithm. Section 4 includes
a thorough description of our implementation details. We
then provide a detailed description of the evaluation proto-
cols in Section 5. We describe the baselines we compare
to in Section 6. Finally, in Section 7, we present additional
ablation experiments and more visualizations.

2. Regularization loss for the generative model

As mentioned in the main paper, Section. 3.5, in addi-
tion to the contrastive and cross-entropy losses, we also use
an adversarial loss to train the stochastic component of our
model. To effectively capture the different modes present in
the data and avoid the notorious mode collapse problem of
GANs, we apply the recently proposed latent code normal-
ized distance regularizing loss [6, 16–18] defined as

Lreg = −Ez1,z2

[
||hv(T (Qz1

,M))− hv(T (Qz2

,M))||1
||z1 − z2||1

]
.

(1)

Intuitively, this regularization loss encourages model
outputs to be different (in L1-norm), for different input
noise vectors z1, z2 ∈ N (0, 1). Note that we only apply the
regularization loss on the outputs of the visual state branch,
i.e. hv(·) in the main paper. For stronger supervision, in our
implementation we follow previous work [6] and generate
S = 20 samples using S latent noise vectors, {zi}1:S , cal-
culate the value of Lreg for all possible pairs, and select the
maximum value to use in the regularization loss Lreg . We
validate the role of this regularization loss in Sec. 7.

3. Inference with Viterbi algorithm
To find the optimal procedure plan, we use the Viterbi al-

gorithm [15], as discussed in Section 3.5 of the main paper.
Traditionally, the Viterbi algorithm is used to find the most
probable path in the first-order Markov model of a dynamic
system. For a sequence of length T and Na possible states
of the system, the Viterbi algorithm relies on two main in-
puts: (i) a transition matrix, A ∈ RNa×Na , capturing the
probability of transitioning from one state, ai, to another,
aj , (ii) an emission matrix, B ∈ RT×Na , describing the
probability of each state, ai, given a set of observations. In
our work, we use the marginal state probabilities for each
timestep (defined as Π̄ in Section 3.5 of the main paper)
as the emission matrix, B, and estimate the transition ma-
trix, A, directly from the ground truth plans. Specifically,
the transition matrix, A, is calculated based on the action
co-occurence frequencies in the training data. To calculate
the value of Ai,j , we must find the number of times ac-
tion ai is followed by action aj in the ground truth plans.
We then normalize each row of A to sum to 1, by applying
L1-normalization followed by a softmax with temperature
τ = 1.

4. Implementation details
Our model uses pre-extracted language and vision fea-

tures, with a model trained on the HowTo100M dataset for
joint text-video embedding [9]. This backbone model em-
beds both vision and language inputs into 512 dimensional
features. For our model, we use a transformer decoder [14]
with eight heads, two layers and 128 dimensional hidden
states. Note that we provide an ablation on our architec-
ture choices in Sec. 7. Since our pre-trained features are of
dimension 512, we embed our initial features using a multi-
layer perceptron (MLP) with shape [512→ 256→ 128] in-
terspersed with ReLU nonlinearities. A similar MLP is used
to project the ground truth language features, li, to the same

1

dimension. For the memory module, we empirically set the
number of memory entries, n, to 128. For the critic, C, we
use another three layer MLP with shape [256 → 64 → 32]
with ReLU activations in all layers. The dimension of the
noise vector, z , is empirically set to 32. We train our model
for 200 epochs with an initial learning rate set to 7 × 10−4

and decayed by 0.65 every 40 epochs. The best performing
model on the validation set (i.e. randomly collected using
20% training data as mentioned in main paper Section 4.1)
is used to report the final test set results.

5. Data curation and evaluation protocol
To train and evaluate our model, we use instructional

video datasets to construct sequences with plans of various
time horizons, T . Each plan contains a pair of {start, goal}
visual observations, {vstart, vgoal}, and a sequence of
ground truth intermediate action labels, a1:T .

Data curation. Following previous work [3, 4], for each
instructional video, we start by extracting the ordered list
of all actions, a1:N , present in the video. We also collect
language descriptions, l1:N , corresponding to each action,
ai. In addition, to obtain various start and goal observations,
we also extract corresponding visual observations, v1:N , by
locating the start and end times of each action following
previous work [3,4]. Note that this information is only used
for data curation and not for training as done in previous
work. Each video is therefore described as the ordered set
of tuples

V = [(a1, l1, v1), . . . , (aN , lN , vN)], (2)

where N is the total number of actions present in the video.
Given the video, V , represented with (2), we curate a

set of plans with prediction time horizon T by sliding a
window of size T + 1, such that at+1:t+T and lt+1:t+T

represent the set of action plans we need to predict, whereas
vt and vt+T represent vstart and vgoal, respectively.

Evaluation protocols. As mentioned in Section 4.3 of the
main paper, there exist two different evaluation protocols
on CrossTask, namely “Protocol 1” and “Protocol 2”. In
all our experiments, we follow previous work [3,4] and use
“Protocol 1”, which relies on the sliding window based data
curation procedure described above. In addition, “Proto-
col 1”, uses a 70/30 train/test dataset split as mentioned in
Section 4.1 of the main paper. For the long horizon plan-
ning experiments on CrossTask (i.e. Section 4.3 of the main
paper), we also adopt an additional protocol, proposed in
recent work [12] and referred to as “Protocol 2”. The main
differences of “Protocol 2” can be summarized in the fol-
lowing three points: (i) Instead of relying on a sliding win-
dow to consider all procedure plans of time horizon T for

each video, “Protocol 2” randomly selects one procedure
plan of horizon T per video. (ii) “Protocol 2” uses 85/15
train/test split. (iii) “Protocol 2” predicts actions, a1:T−1,
which concretely means that, for a prediction horizon, T , it
actually makes T − 1 predictions.

6. Baselines
Here, we provide a more detailed description of the pro-

cedure planning baselines used in our paper.
- Random. As an elementary baseline, we randomly select
action steps from the entire vocabulary with equal probabil-
ity (i.e. Uniform distribution) for evaluation.
- Retrieval-Based. For each start and goal observation pair-
ing, {vstart, vgoal}, in the test set, this method retrieves the
nearest neighbor in the train-set based on visual feature sim-
ilarity. The plan labels associated with the retrieved nearest
neighbor is used for evaluation.
- WLTDO [5] and UAAA [1]. These two frameworks use
recurrent neural networks (RNN) [10] for action planning
from the visual observation input.
- Universal Planning Networks (UPN) [11]. UPN is a
physical-world path planning algorithm with a continuous
action policy. We follow previous work [4] to modify it via
appending a softmax function for the discrete action space.
- Dual Dynamics Networks (DDN) [4]. DDN models the
state-action transition of procedural plans with a two-branch
auto-regressive model. The state branch is modeled with an
MLP, while the action branch uses an RNN.
- PlaTe [12]. This method simply replaces the models used
in the two-branch model of DDN with autoregressive trans-
former modules.
- Ext-GAIL [3]. This method uses reinforcement learning
techniques for procedure planning and augments the DDN
architecture with a context latent variable.

7. Additional ablation experiments
In addition to the various ablations presented in the main

paper, here, we provide additional experiments to evaluate
other aspects of our loss, architecture and inference proce-
dure.

7.1. Impact of the regularization loss

In this experiment we further evaluate our model’s capa-
bility to model plan distributions. For this purpose we fol-
low the evaluation procedure adopted in Section 4.4 of the
main paper. The effectiveness of the diversity regularization
loss, (1), for our approach is studied in Table 1. It is clear
that training without the regularization leads to worse NLL
and KL-div values. These results confirm the important role
of the regularization in the probabilistic model, which in-
deed seems to suffer from mode dropping in the absence of
such regularization.

2

Metric ↓ Method T = 3 T = 4 T = 5 T = 6

NLL Ours - prob. w/o Lreg 5.07 6.61 7.57 8.28
Ours - prob. 4.89 5.48 6.24 7.67

KL-Div Ours - prob. w/o Lreg 2.37 4.45 6.49 7.74
Ours - prob. 2.11 3.50 4.26 6.89

Table 1. The effect of diversity regularization loss on the produced
plans in the CrossTask dataset.

emission matrix SR ↑ mAcc ↑ mIoU ↑
B Uniform 0.12 7.25 <0.01
A Uniform 22.61 46.12 70.24

Ours 23.34 49.96 73.89

Table 2. The effect of estimating transition matrix, A, and emis-
sion matrix, B, of Viterbi post-processing from data. The results
are for prediction horizon, T = 3, on the CrossTask dataset.

7.2. Impact of the Viterbi post-processing

In the main paper, we have shown that using Viterbi post-
processing, while relying on our predicted plan distribution,
Π̄, as an emission matrix, leads to overall better plan predic-
tions (i.e. see Table 1 of the main paper). Here, we further
study the role of emission, B, vs. transition, A, matrices,
in the Viterbi-based plan inference. In particular, to show
the importance of using our predicted distribution, Π̄, as an
emission matrix, we substitute it with a uniform matrix, i.e.
a matrix with all values equal to 1

Na
, and perform plan in-

ference with a correspondingly modified Viterbi algorithm.
In other words, in these settings, the plan inference will be
driven purely by the transition matrix, A. We also experi-
ment with setting A to the uniform matrix, and only using
B to drive Viterbi’s inference. Table 2 shows that our origi-
nal formulation gives the best results and highlights the im-
portance of estimating the emission and transition matrices
properly from data, as handled by our model.

7.3. Impact of the size of the sample set

In the main paper, we provide inference results obtained
by sampling K = 1500 procedure plans from our proba-
bilistic model. Here, we ablate this parameter and show its
influence on how well we fit the ground truth plan distribu-
tion. Table 3 shows that larger value of K generally leads
to better results as it can better approximate the true distri-
bution. However, it should be noted that larger value of K
require more computation. We therefore chose K = 1500
for our experiments as a reasonable trade-off between per-
formance and computation cost.

7.4. Impact of transformer architecture

Here, we examine the impact of the transformer archi-
tecture on the plan prediction performance. To save on the
computations, we limit this study to a prediction horizon

Metric ↓ K T = 3 T = 4 T = 5 T = 6

NLL

150 5.03 ±0.21 5.85 ±0.31 6.78 ±0.25 8.73 ±0.43
500 4.91 ±0.11 5.71 ±0.20 6.57 ±0.13 8.33 ±0.27
1500 4.89 ±0.10 5.48 ±0.11 6.24 ±0.09 7.67 ±0.18
2500 4.89 ±0.04 5.45 ±0.06 6.22 ±0.05 7.63 ±0.08

KL-Div

150 2.51 ±0.31 4.20 ±0.44 4.66 ±0.29 7.23 ±0.14
500 2.48 ±0.24 3.58 ±0.12 4.51 ±0.20 6.94 ±0.10
1500 2.11 ±0.10 3.50 ±0.06 4.26 ±0.08 6.89 ±0.03
2500 2.01 ±0.06 3.27 ±0.02 4.18 ±0.02 6.83 ±0.01

Table 3. Ablation study of the number of samples, K, used by our
approach for probabilistic inference. We show NLL and KL-Div
results with corresponding variances obtained from 20 runs.

layers/heads SR ↑ mAcc ↑ mIoU ↑
2/1 17.81 40.67 70.85
2/4 20.54 48.32 73.05
2/8 23.34 49.96 73.89
3/4 19.21 45.51 72.47
3/8 14.85 39.48 69.72

Table 4. Ablation study on the number of layers and heads for
prediction horizon, T = 3, with CrossTask.

of T = 3. Table 4 shows the performance of alternative
transformer configurations with different number of layers
and/or heads. The model used in our paper – with two layers
and eight heads – performs best on CrossTask.

7.5. Alternative uncertainty baselines

Our approach captures the uncertainty of plans by learn-
ing a stochastic model (GAN), which allows it to produce
distinct procedure plans when seeded with different random
noise vectors. On the other hand, one can follow a more
naive approach and obtain diverse outputs from a model
trained deterministically (i.e. no randomness at training), by
adding random noise to the system only at inference, e.g.,
injecting random noise in the input or using dropout at infer-
ence. Here, we compare our GAN-based formulation to the
aformentioned naive approaches for introducing diversity in
the predicted plans; results are summarized in Table 5. In
particular, we evaluate adding Gaussian random noise of
different intensity to the input, i.e. N (0, σ), and applying
dropout (of probability p) to the hidden representation of
the network at inference time. We see that both baselines
can increase diversity at the cost of accuracy. The best naive
configuration is Ours-deter+dropout (p = 0.3) which is still
inferior to our full GAN-based approach on both determin-
istic and probabilistic metrics. This result shows the impor-
tance of learning the uncertainty model during training, as
opposed to simply adding it at inference, confirming that the
GAN is useful for modelling uncertainty in our scenario.

7.6. Ablation on Video+Language features

In this study, we choose vision+language features pre-
trained on HowTo100M because recent work (e.g., [7, 8])

3

Datasets SR ↑ mAcc. ↑ mIoU ↑ KL-Div ↓ NLL ↓ MCPrec ↑ MCRec ↑
Ours-prob. (HowTo100M pretrained) 23.34 48.96 73.89 2.11 4.89 36.61 66.13
Ours-prob. (CrossTask pretrained) 10.82 35.11 58.32 3.78 5.56 17.19 12.40

Ours-deter+noise (σ = 1) 20.02 44.76 72.96 2.37 5.77 24.74 67.21
Ours-deter+noise (σ = 3) 10.94 42.67 63.63 3.53 7.51 4.290 58.96
Ours-deter+noise (σ = 5) 5.83 35.53 55.43 5.52 8.53 1.169 37.01
Ours-deter+dropout (p = 0.1) 22.27 45.43 73.40 2.34 5.49 33.79 44.17
Ours-deter+dropout (p = 0.3) 22.04 43.64 70.97 2.46 5.83 30.61 55.32
Ours-deter+dropout (p = 0.5) 20.77 44.89 70.21 2.73 6.40 24.08 64.61

Ours-prob. (Strong Sup.) 24.41 45.17 73.83 2.12 4.71 36.89 62.69

Table 5. (top rows) Results using features extracted from a model pre-trained on HowTo100M vs. features finetuned on CrossTask. (middle
rows) Ablation study on two alternative ways for uncertainty modeling. (last row) Strong visual supervision results. Blue text indicates the
top performer and red the 2nd-best result. All results are from final evaluation on CrossTask at T = 3.

Metric ↓ Method T = 3 T = 4 T = 5 T = 6

NLL Ours - determinstic 6.37 6.38 7.71 8.95
Ours - probabilistic 6.37 6.37 7.79 8.84

KL-Div Ours - determinstic 5.34 6.88 6.75 7.06
Ours - probabilistic 5.75 6.68 6.84 7.15

Table 6. Evaluation of the plan distributions produced by our prob-
abilistic approach vs. the deterministic variant on COIN.

show state-of-the-art results with such features on the
datasets we are experimenting with (i.e., COIN, CrossTask).
Still, it is interesting to consider using a dataset’s “native”
features as a variation. For this experiment, we use the
CrossTask dataset, employ the video features trained on it
(provided with the dataset) and train language embeddings
(not provided by the dataset) by ourselves; we finetune the
language model [8] to align with CrossTask’s video fea-
tures, using contrastive learning. These features are then
used to train our model as described in Section 3 in the
main paper. Table 5 (top two rows) shows that using the
“native” CrossTask features is still inferior to the large-scale
pre-training on HowTo100M [9]. This result could be due to
the relative scarcity of data in CrossTask that is insufficient
to train strong language+vision features.

7.7. Comparison to strong supervision

Our framework also can be trained with strong supervi-
sion, i.e. simply swapping the language supervision signals,
{li}, in Eq. 5 of the main manuscript with visual ones, {vi};
see Sec. 5 in this supplement. We show the results result-
ing from this setting in Table 5 (bottom row). Accessing
the full annotations can modestly improve or hurt the per-
formance, depending on the metric. Thus, our weakly su-
pervised model performs comparably, while being cheaper
to train.

7.8. Additional probabilistic evaluation

In the main paper, we evaluated our probabilistic model
on the CrossTask dataset by measuring the Negative Log-
likelihood (NLL) and KL divergence (KL-Div). Here, we

Metric ↓ Method T = 3 T = 4 T = 5 T = 6

NLL Ours - determinstic 7.18 7.79 8.49 9.17
Ours - probabilistic 7.07 7.81 8.36 9.25

KL-Div Ours - determinstic 5.35 5.60 5.96 8.23
Ours - probabilistic 4.92 5.76 6.28 9.51

Table 7. Evaluation of the plan distributions produced by our prob-
abilistic approach vs. the deterministic variant on NIV.

Datasets T = 3 T = 4 T = 5 T = 6

CrossTask 3.26 6.76 8.40 9.29
COIN 1.51 1.93 2.25 2.35
NIV 1.03 1.07 1.28 1.29

Table 8. The average number of unique paths that share the same
start and goal across multiple horizons and datasets.

further provide such results for COIN (in Table 6) and NIV
(in Table 7). Interestingly, different from the results ob-
tained on CrossTask (i.e. Table 6 in the main paper), we
observe that there is no significant difference between our
approach and the deterministic counterpart on COIN and
NIV. We suspect that this happens because the NIV and
COIN datasets are lacking variability in goal-conditioned
plans. To verify that hypothesis, we conduct a quantita-
tive evaluation of such variability on COIN and NIV. In Ta-
ble 8, we show the average number of distinct plans that
can connect the same start and goal observations for each
dataset and prediction horizon. It is clear that the plans in
CrossTask are much more diverse than those present in the
other two datasets. In particular, CrossTask has the largest
average number of distinct plans for each time horizon. No-
tably, for all datasets, it seems longer horizons tend to have
larger variability. We believe that this is reasonable because
any variations of intermediate steps would result in different
paths, which highlights the importance of adopting a prob-
abilistic point of view for procedure planning.

4

7.9. Additional visualizations

In Figures 1 to 4, we provide additional visual exam-
ples of plans produced by our model for different prediction
horizons. We also show failure cases and discuss potential
reasons for such behaviour in corresponding captions. Note
that the top two rows in each figure are successful predic-
tions and the bottom row is the failure case. In each row of
images, the first and last images denote the start and goal
observations respectively, and the very next row shows the
action labels predicted from our approach (i.e. rows begin-
ning with “Sample”). For failure cases, we show the corre-
sponding ground truth plan (i.e. rows beginning with “GT”)
for better understanding. In addition, we also show the
(unseen) intermediate visual observations just for clarity of
presentation. Our approach does not use them for training
and/or testing.

8. Attribution of assets
This research was made possible thanks to the following

assets.
- CrossTask dataset [19]. Our study follows the rules from
the official license and uses the video URLs and anno-
tations from this website: https://github.com/
DmZhukov/CrossTask. Our usage of CrossTask is lim-
ited to this academic work.
- COIN dataset [13]. We have signed and submitted the
official licence agreement from URL: https://coin-
dataset.github.io/. Our study uses the provided
videos/annotations and follows the rules from their license.
- NIV dataset [2]. We follow the license agreement and use
videos/annotations from URL: https://github.com/
jalayrac/instructionVideos.
- MIL-NCE pre-trained model [9]. We follow the
license agreement and use the provided pre-trained
model weights from URL: https://github.com/
antoine77340/S3D_HowTo100M.

5

Add
Flour

Add
Egg

Whisk
Mixture

Add
Season

Put on
Grill

Flip
Steak

Add
Milk

Whisk
Mixture

Dip
Bread

Sample

Sample

Sample

GT
Add

Vanilla Extract

Whisk
Mixture

Dip
Bread

Figure 1. Visualization of two successful outputs (top two rows) and one failure output for T = 3 (bottom row) on CrossTask. Our
approach can produce decent plans when the given start and goal observations are clear. However, we do notice some failures when the
steps deviate from the usual expected actions for a certain plan, as shown in the bottom row.

Cut
Shelve

Sand
Shelve

Assemble
Shelve

Paint
Shelve

Add
Onion

Add
Kimchi

Add
Ham

Stir
Mixture

Raise
Jack

Lower
Jack

Raise
Jack

Raise
Jack

Sample

Sample

Sample

GT
Raise
Jack

Lower
Jack

Lower
Jack

Lower
Jack

Figure 2. Visualization of two successful outputs (top two rows) and one failure output for T = 4 (bottom row) on CrossTask. Note that in
the failure case, the start and goal observations are not clearly distinguishable. For example, in the procedure of Jack a Car shown in the
bottom row, it is hard to reason about the transitions between the start and goal observations when their difference is so subtle.

6

Dip
Bread

Put in
Pan

Flip
Bread

Put in
Plate

Top
Toast

Add
Sugar

Add
Salt

Put in
Water

Put in
Jar

Seal
Jar

Add
Sugar

Press
Coffee

Pour
Espresso

Pour
Alcohol

Stir
Mixture

Sample

Sample

Sample

GT Add
Sugar

Pour
Espresso

Stir
Mixture

Pour
Alcohol

Stir
Mixture

Figure 3. Visualization of two successful outputs (top two rows) and one failure output for T = 5 (bottom row) on CrossTask. In the
failure case depicted here, we notice that our model still produces a plausible plan.

Peel
Banana

Cut
Banana

Put in
Blender

Mix
Ingredient

Mix
Ingredient

Mix
Ingredient

Add
Season

Put in
Grill

Take from
Grill

Check
Temperature

Close
Lid

Take from
Grill

Assemble
Shelves

Assemble
Shelves

Assemble
Shelves

Cut
Shelves

Paint
Shelves

Assemble
Shelves

Sample

Sample

Sample

GT Assemble
Shelves

Assemble
Shelves

Assemble
Shelves

Cut
Shelves

Assemble
Shelves

Assemble
Shelves

Figure 4. Visualization of two successful outputs (top two rows) and one failure output for T = 6 (bottom row) on CrossTask. Note that the
ground truth of the failure case depicted here contains a sequence of repetitive actions. Importantly, notice that while the goal observation
depicts a change in color, suggesting the action of Paint Shelves as predicted by our model, the ground truth seems to ignore that matter.

7

References
[1] Yazan Abu Farha and Juergen Gall. Uncertainty-aware an-

ticipation of activities. In Proceedings of the International
Conference on Computer Vision (ICCV), 2019. 2

[2] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal,
Josef Sivic, Ivan Laptev, and Simon Lacoste-Julien. Unsu-
pervised learning from narrated instruction videos. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 5

[3] Jing Bi, Jiebo Luo, and Chenliang Xu. Procedure planning
in instructional videos via contextual modeling and model-
based policy learning. In Proceedings of the International
Conference on Computer Vision (ICCV), 2021. 2

[4] Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli,
Li Fei-Fei, and Juan Carlos Niebles. Procedure planning in
instructional videos. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2020. 2

[5] Kiana Ehsani, Hessam Bagherinezhad, Joseph Redmon,
Roozbeh Mottaghi, and Ali Farhadi. Who let the dogs out?
Modeling dog behavior from visual data. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2

[6] Shaohui Liu, Xiao Zhang, Jianqiao Wangni, and Jianbo Shi.
Normalized diversification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1

[7] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming Zhou.
UniVL: A unified video and language pre-training model for
multimodal understanding and generation. arXiv preprint
arXiv:2002.06353, 2020. 3

[8] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-end
learning of visual representations from uncurated instruc-
tional videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 3,
4

[9] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
HowTo100M: Learning a text-video embedding by watching
hundred million narrated video clips. In Proceedings of the
International Conference on Computer Vision (ICCV), 2019.
1, 4, 5

[10] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating er-
rors. Nature, 323(6088):533–536, 1986. 2

[11] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Universal planning networks: Learning
generalizable representations for visuomotor control. In In-
ternational Conference on Machine Learning (ICML), 2018.
2

[12] Jiankai Sun, De-An Huang, Bo Lu, Yun-Hui Liu, Bolei
Zhou, and Animesh Garg. PlaTe: Visually-grounded plan-
ning with transformers in procedural tasks. arXiv preprint
arXiv:2109.04869v1, 2021. 2

[13] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng,
Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. COIN:

A large-scale dataset for comprehensive instructional video
analysis. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 5

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017. 1

[15] Andrew Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transac-
tions on Information Theory, 13(2):260–269, 1967. 1

[16] Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tianchen
Zhao, and Honglak Lee. Diversity-sensitive conditional gen-
erative adversarial networks. In International Conference on
Learning Representations (ICLR), 2018. 1

[17] Ye Yuan and Kris Kitani. DLow: Diversifying latent flows
for diverse human motion prediction. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020. 1

[18] He Zhao and Richard P Wildes. On diverse asynchronous
activity anticipation. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2020. 1

[19] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk
Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-
task weakly supervised learning from instructional videos.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 5

8

